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Abstract 

Cognitive neuroscientists rarely consider the influence that body position exerts on brain 

activity; yet, postural variation holds important implications for the acquisition and 

interpretation of neuroimaging data. Whereas participants in most behavioral and 

electroencephalography (EEG) experiments sit upright, many prominent brain imaging 

techniques—e.g., functional magnetic resonance imaging (fMRI)—require participants to 

lie supine. Here we demonstrate that physical comportment profoundly alters baseline 

brain activity as measured by magnetoencephalography (MEG)—an imaging modality 

that permits multi-postural acquisition. We collected resting-state MEG data from 12 

healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). 

Source-modeling analysis revealed a broadly distributed influence of posture on resting 

brain function. Sitting upright versus lying supine was associated with greater high-

frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. 

Moreover, sitting upright and reclined postures correlated with dampened activity in 

prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The 

observed effects were large, with a mean Cohen's d of .95 (SD = .23). In addition to 

neural activity, physiological parameters such as muscle tension and eye blinks may have 

contributed to these posture-dependent changes in brain signal. Regardless of the 

underlying mechanisms, however, the present results have important implications for the 

acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI 

or PET with EEG or MEG). More broadly, our findings indicate that generalizing 

results—from supine neuroimaging measurements to erect positions typical of ecological 

human behavior—would call for considering the influence that posture wields on brain 

dynamics.  



 3 

Introduction 

Neuroimaging researchers typically assume that body position has a negligible 

impact on human brain activity. However, postural discrepancies may hold important 

implications for brain function in general and for specific imaging methodologies in 

particular (Raz et al., 2005; Thibault & Raz, 2016). Behavioral findings intimate that 

body posture alters perceptual thresholds and cognitive processing (Lipnicki & Byrne, 

2008; Lundström et al., 2008). Moreover, converging evidence demonstrates that posture 

regulates physiological factors, including hemodynamics, and influences concomitant 

neurocognitive function (Ouchi et al., 1999; Chang et al., 2011; Fardo, Spironelli, & 

Angrilli, 2013; Rice et al., 2013; Cole, 1989; Thibault et al., 2014, 2016; Spironelli & 

Angrilli, 2011; Spironelli et al., 2016; Benvenuti, Bianchin, & Angrilli, 2013). 

Comparing postures using a stance-adjustable position emission tomography (PET) 

gantry, one study reported signal differences across a range of cortical and subcortical 

regions (Ouchi et al., 1999). In addition, a few studies have found changes in 

electroencephalography (EEG) signals as a function of posture (Chang et al., 2011; Rice 

et al., 2013; Fardo et al., 2013; Cole, 1989; Spironelli & Angrilli, 2011; Spironelli et al., 

2016; Benvenuti et al., 2013). An EEG effort from our group indicated that orthostatic 

condition rapidly influences high-frequency electrical activity across the cortex (Thibault 

et al., 2014). In addition, we recently published a proof-of-concept analysis based on the 

present multi-postural magnetoencephalography (MEG) data-set (Thibault, Lifshitz, & 

Raz, 2016). However, this preliminary sensor-level analysis could hardly elucidate how 

body position influences neural activity in specific anatomical areas. Thus, here we used 

a source-localization approach to further examine the effects of posture at the level of 

regional brain function. 
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Body posture may impact neural function through a variety of physiological 

mechanisms. Gravity in the supine position stimulates baroreceptors that reduce 

sympathetic system activation (Mohrman, 2003), decreasing noradrenergic output from 

the locus coeruleus (Berridge & Waterhouse, 2003) and consequently dampening cortical 

excitability (Rau & Elbert, 2001). In addition, supine posture modulates respiration, 

regardless of age, by altering diaphragm function (Rehder, 1998). This caveat holds 

special import for independent component analysis (ICA)-based measures of resting-state 

functional connectivity, which show substantial respiratory confounds (Birn et al., 2008). 

Such postural nuances come to the fore as researchers increasingly compare supine 

functional magnetic resonance imaging (fMRI) findings with resting-state 

electrophysiological data from EEG and intracranial recordings, often acquired in the 

upright position (Agam et al., 2011; Lei et al., 2012; Lei et al., 2011).   

 

Figure 1. Posture and dewar positions 

 

 MEG is advantageous for studying the effects of posture on brain activity because 

certain MEG systems offer scanning capabilities across a range of body positions (see 

Figure 1). In contrast, although upright MRI scanners for humans exist, they tend to 

employ low magnetic fields, and often preclude functional sequences. Moreover, whereas 
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previous studies of posture used either PET or EEG, these methodologies lack integration 

of high-resolution spatial and temporal signals. On the one hand, PET provides 

reasonable spatial resolution but crude temporal resolution via an indirect measure of 

neural activity. On the other hand, EEG directly measures brain oscillations with 

millisecond precision but offers poorer signal localization due to smearing of electrical 

signals when passing through the cranial fluids and tissues (Vorwerk et al., 2014). Here 

we leveraged MEG localization analysis, which offers a direct measure of oscillatory 

activity with high spatiotemporal accuracy, to unravel the influence of body position on 

regional activity throughout the cortex.  

Materials and Methods 

Participants 

Twelve participants (mean age = 26.4 ± 4.2 years; six females) provided written informed 

consent in accordance with the Research Ethics Board at the Montreal Neurological 

Institute and in compliance with the Declaration of Helsinki. Participants were right-

handed, reported normal or corrected-to-normal vision, and received customary monetary 

compensation for their involvement. 

Procedure 

All sessions began with a two-minute empty-room MEG recording. We then tested 

participants for magnetic artefacts in a brief preliminary MEG scan. For the main portion 

of the experiment, participants transitioned among three postures (sitting upright, 

reclining at 45°, and lying supine) in a counterbalanced fashion. For each posture, 

participants underwent two 8-minute resting-state MEG scans, separated by a brief (1 - 2 

minute) break in the scanner. Throughout the MEG acquisitions, we instructed 

participants to relax, remain still, and fixate on a point directly ahead while keeping their 
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eyes open. We standardized the visual environment by draping a white sheet around their 

visual field. 

Magnetoencephalography 

We acquired MEG data using the VSM/CTF system (MEG International Services Ltd.) at 

the Montreal Neurological Institute. The sensor array consisted of 270 axial gradiometers 

plus an additional nine reference magnetometers and 17 reference gradiometers farther 

from the helmet to remove environmental noise. We recorded using a sampling rate of 

2400 Hz inside a dedicated scanning room with full 3-layer passive magnetic shielding, 

while head-positioning coils and a 3-D digitizer system (Polhemus Isotrack) registered 

cephalic position throughout. In line with standard guidelines, we recorded 

electrocardiograms (ECG) and electrooculograms (EOG) to capture heartbeat and eye-

blink artifacts (Gross et al., 2013). Between postures participants left the scanning room 

while an experimenter adjusted the angle of the MEG dewar. We then waited for 15 

minutes, followed by a two-minute empty-room recording, to ensure that the liquid 

helium level outside the helmet and the temperature at the sensors had stabilized. Based 

on tests of our MEG system at the Montreal Neurological Institute, we determined that 

noise contamination from the sensors levels off within 15 minutes (Figure 2 displays 

empty room and participant-scan noise spectra for all dewar positions and body postures). 

Whereas the helium boil-off rate increases when the dewar is in the supine recording 

position, all sensors remain submerged in liquid helium and the temperature at each 

sensor remains constant. 

 Before the scans we placed foam blocks between the helmet and the forehead of 

participants to help reduce head motion, if needed. The exact placement of these foam 

blocks depended on the size and shape of the individual head. We instructed participants 
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to position their head such that they were touching but not pressing against the top of the 

helmet. Recently acquired T1-weighted anatomical MRI volumes helped map head 

position relative to the helmet. To facilitate the analysis, we down-sampled the high-

resolution triangulated cortical surfaces to 15,000 vertices in line with standard protocol 

(Baillet et al., 2001). 

 

 

Figure 2. Noise spectra for participant and empty room recordings 

The top six graphs depict the power spectrum densities for each of the 270 gradiometers averaged 

across all runs for each posture (for participant recordings, on the left) and each dewar position 
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(for empty room recordings, on the right).  The bottom graph depicts the average across all 270 

gradiometers for each of the above six conditions. As in our analysis, in this graph we removed 

frequencies below 2 Hz as well as electrical contamination from 58-62 Hz.  When performing our 

source analysis we removed the environmental noise detected prior to each participant recording 

by accounting for an empty-room noise covariance matrix. For example, this analysis regressed 

out the two blips around 20 Hz and 50 Hz in the reclined empty room condition. 

 

Data processing 

We processed and analyzed MEG data using Brainstorm (Tadel et al., 2011). We applied 

a high-pass filter at 0.1 Hz and removed potential electrical contamination using a 

sinusoidal (notch) filter at 60, 120, 180, and 240 Hz. We then removed cardiac sources 

and contamination from eye blinks and eye movements by designing signal-space 

projectors (SSPs). Each SSP was specific to a particular run. We removed one cardiac 

and one blink SSP from each run in order to maintain comparable cleaning procedures 

and levels of background data subtracted between postures. We then visually inspected 

all data and discarded segments with any lingering ocular or cardiac contamination as 

well as high-amplitude muscle artefacts. We discarded data segments in which either of 

the two head localizer coils (left and right pre-auricular points) was farther than five 

millimeters from its position at the beginning of the recording; on average, participants 

moved their head less than two millimeters by the end of the recording (see Figure 3). We 

calculated a noise covariance matrix from each of the 36 empty-room recordings (i.e., 12 

participants by three postures). Each baseline noise recording was then applied to the 

corresponding participant recording to tease apart fluctuations in instrumental and 

environmental dynamics that the sensors detected in the empty room (Tadel et al., 2011). 

This procedure minimizes the potential influence of noise differences associated with 

different dewar positionss.  
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 We computed a head model of the cortex surface for each run using overlapping 

spheres, and proceeded to compute sources using the whitened and depth-weigthed linear 

L2-minimum norm estimates (wMNE) algorithm implemented in Brainstorm. To 

normalize sources across participants, we projected (warped) the sources from each 

participant onto the MNI/Colin27 template brain (Collins et al., 1998). The algorithms 

responsible for this transformation from sensor-level data to source-space activity take 

into account head placement in relation to sensor location and thus compensate for 

differences in head size between participants and head placement across runs. We then 

calculated the power-spectrum density (PSD) for each run at all 15,000 vertices on the 

template brain for delta (δ) 2-4 Hz, theta (θ) 4-8 Hz, alpha (α) 8-14 Hz, beta (β) 14-30 

Hz, low-gamma (γ1) 30-58, and high-gamma (γ2) 62-90 Hz using 50% overlapping 

windows of two-second epochs. We then divided these 15,000 vertices into 68 cortical 

regions as per the Desikan-Killiany neuroanatomical atlas (Desikan et al., 2006). We 

averaged the PSDs across all the vertices in each scout to obtain 68 averaged PSDs. 

Statistical analysis 

We first calculated the average of the two runs for each participant in each posture. Using 

the R statistics package, we conducted two-tailed paired sample t-tests on the logarithm 

of the power of the current density for each Desikan-Killiany region (Desikan et al., 

2006) for each bandwidth, for a total of 408 (68 regions by six bandwidths) p-values per 

contrast (ie.e., sitting upright vs. lying supine, sitting upright vs. reclining at 45°, 

reclining at 45° vs. lying supine). To account for multiple comparisons, we calculated 

adjusted p-values (q-values) using the false discovery rate function from the qvalue 

package available in R (Storey et al., 2015) for each of the three contrasts. For the empty-

room recordings, we repeated this analysis for the PSD values obtained from each 
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magnetic sensor, rather than from the Desikan-Killiany regions used for the participant 

recordings (due to the absence of a head in the dewar), and found no statistical difference 

between postures. We also performed one-tailed paired sample t-tests on heart rate for 

each contrast. 

 

 
Figure 3. Head displacement in upright and supine postures 

This figure displays, as a function of posture, the means and standard deviations in head 

displacement of the left and right auricular head localizer units at every second of the 480 second 

(eight-minute) recordings. On average, participants displaced their head by about twice as much 

when sitting upright (left: 1.7 mm, right: 2.0 mm) compared to when lying supine (left: 0.7 mm, 

right: 1.1 mm). However, mean head displacements in all postures remained well below the 
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threshold (~5 mm) that would call for repositioning the head or initiating a new head position file 

in standard MEG analysis practice (Gross et al., 2013; Whalen et al., 2008). Longer recordings 

and particular populations (e.g., children: Wehner et al., 2008) increase the likelihood of greater 

head displacement. In such experiments, posture may prove especially pertinent with respect to 

head movement.  

 

 

Results 

Our main contrast of interest investigated differences in oscillatory power across the 

whole brain between sitting upright and lying supine. For this contrast, we conducted 408 

t-tests (68 scout regions by six bandwidths). Of these tests, 76 yielded significant 

differences in brain signal (corrected for multiple comparisons, q < .05). Figure 4 

displays the significant brain regions and frequency bands for the contrast between sitting 

upright and lying supine. Table 1 further lists the anatomical label, effect size, and 

amplitude difference for each of the significant regions at each bandwidth. The mean 

Cohen's d for these significant effects was .87 (SD = .28), indicating large effect sizes. 

 In addition to our primary analysis, we also investigated power differences 

associated with reclining by conducting two contrasts (408 t-tests for each): (1) reclining 

vs. lying supine, and (2) reclining vs. sitting upright. In the reclined vs. supine contrast, 

16 of the 408 t-tests yielded significant changes in brain signal (corrected for multiple 

comparisons, q < .05; see Table 2). The effects were large, with a mean Cohen's d of 1.33 

(SD = .28). Although this mean effect size was notably larger than in the sitting upright 

vs. lying supine contrast, the amplitude of the changes was similar (compare Tables 1 and 

2). Thus, the difference in effect size likely reflects a difference in variance. When 
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comparing between sitting upright and reclining we found a significant difference in only 

one region at one bandwidth.  

Heart rate was greater in more upright postures (sitting upright: 70.7 beats per 

minute; reclining: 68.8 bpm; lying supine: 64.6 bpm). Using a Bonferroni corrected α = 

.017, only the difference between sitting upright and lying supine (p < .001, d = 1.33) and 

reclining and lying supine (p = .015, d = .72) met significance (sitting upright vs. 

reclining: p = .05, d = .52). As an exploratory post-hoc analysis, we tested whether 

between-posture differences in heart rate correlated with between-posture differences in 

oscillatory power (using Pearson's correlation coefficients at each neuroanatomical 

region and bandwidth). These analyses yielded no significant correlations, yet the results 

remain inconclusive because the relationship between heart rate and brain activity may 

be non-linear and our analysis underpowered. 
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Figure 4. Posture-dependent changes in regional brain activity  

Colored brain regions show areas where t-tests revealed source-level power differences when 

contrasting sitting upright against lying supine (mapped on the Desikan-Killiany neuroanatomical 

atlas). Red (q < .05) signifies greater oscillatory activity when sitting upright, whereas blue (q < 

.05) signifies lower activity when sitting upright. Each column presents one brain map viewed 

from six different angles. 
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Table 1. This table lists Desikan-Killiany neuroanatomical regions where q < .05 between sitting 

upright and lying supine. Each result includes effect size (Cohen's d) and the amplitude of the 

difference (Δ).  

 

Delta Theta Alpha Beta Gamma 1 Gamma 2

Desikan-Killiany Region d ɲ d ɲ d ɲ d ɲ d ɲ d ɲ 

LT temporalpole 0.92 -0.50 1.08 -0.41 0.74 -0.32 0.75 -0.32

LL rostralanteriorcingulate 0.91 -0.49 0.88 -0.34 0.80 -0.33 0.77 -0.31 0.73 -0.09

LPF medialorbitofrontal 0.90 -0.54 1.17 -0.43 0.98 -0.39 0.97 -0.39 0.76 -0.12

LT fusiform 0.88 -0.34 0.79 -0.26

RF parstriangularis 0.86 -0.33 1.24 -0.31 1.16 -0.21

RP inferiorparietal 0.86 0.29 0.82 0.16 0.99 0.14

LT entorhinal 0.85 -0.44 0.79 -0.35 0.90 -0.28 0.85 -0.28

RPF medialorbitofrontal 0.80 -0.41 0.94 -0.31 0.83 -0.27 0.73 -0.11

LPF lateralorbitofrontal 0.79 -0.47 0.95 -0.30

RO cuneus 0.78 0.42 0.74 0.18

RL rostralanteriorcingulate 0.76 -0.37

RF rostralmiddlefrontal 0.76 -0.36 0.91 -0.31 0.76 -0.29

RT parahippocampal 0.82 -0.20

RPF parsorbitalis 0.81 -0.24

RPF lateralorbitofrontal 0.76 -0.25

RF parsopercularis 0.78 -0.24

LP inferiorparietal 0.80 0.31 0.85 0.24 1.22 0.20

LP supramarginal 0.72 0.20 0.90 0.25 1.04 0.28

RPF frontalpole 1.33 -0.24

LPF frontalpole 1.11 -0.26 0.71 -0.18

RP supramarginal 1.06 0.12 1.22 0.15

LT transversetemporal 0.88 0.24 0.92 0.29

LT bankssts 0.80 0.22 0.99 0.24

LO lateraloccipital 0.78 0.28 0.94 0.27

LO pericalcarine 0.76 0.28 0.85 0.27

RO pericalcarine 0.74 0.26 0.80 0.24

LO cuneus 0.72 0.26 0.80 0.20

LC postcentral 0.94 0.21

LL posteriorcingulate 0.92 0.12

RL posteriorcingulate 0.79 0.09

LC precentral 0.77 0.19

RL caudalanteriorcingulate 0.77 0.09

RP precuneus 0.76 0.17

RC postcentral 0.75 0.09

LP superiorparietal 0.74 0.14

RT bankssts 0.74 0.17

RO lateraloccipital 0.71 0.23

LP precuneus 0.71 0.16
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Table 2. This table lists Desikan-Killiany neuroanatomical regions where q < .05 between 

reclined and supine postures. Each result includes effect size (Cohen's d) and the amplitude of the 

difference (Δ).  

 

Discussion  

The present study leverages multi-postural MEG to unravel how body orientations 

associated with prevalent imaging procedures (e.g., sitting upright in EEG vs. lying 

supine in fMRI) impact resting-state brain activity. Extending previous sensor-level 

findings (Chang et al., 2011; Rice et al., 2013; Cole, 1989; Fardo et al., 2013; Benvenuti, 

Bianchin, & Angrilli, 2013; Spironelli & Angrilli, 2011; Spironelli et al., 2016; Thibault 

et al., 2014; Thibault et al., 2016), here we report a source-level MEG analysis revealing 

that sitting upright, compared to lying supine, was associated with greater power in high-

frequency bands (i.e., extending from beta to high gamma) in a wide swath of parieto-

occipital cortex. Furthermore, prefrontal oscillatory power was dampened in the upright-

seated position to varying degrees depending on the bandwidth (with effects ranging from 

delta to low gamma bands). Beyond our primary analysis contrasting sitting upright vs. 

lying supine, we also investigated brain activity associated with reclining at 45°. When 

comparing reclined to supine posture, we found power differences in frontal regions, 

Delta Theta Alpha Beta Gamma 1 Gamma 2

Desikan-Killiany Region d ɲ d ɲ d ɲ d ɲ d ɲ d ɲ 

LT temporalpole 1.15 -0.48

RPF medialorbitofrontal 1.20 -0.44

RL rostralanteriorcingulate 1.20 -0.47

LPF lateralorbitofrontal 1.25 -0.48 1.14 -0.26

LPF medialorbitofrontal 1.28 -0.65 1.67 -0.44 1.58 -0.37

LT insula 1.26 -0.27

LO lingual 1.27 -0.25

LL rostralanteriorcingulate 1.41 -0.53

LT inferiortemporal 1.48 -0.36

LT fusiform 1.85 -0.35 1.27 -0.26

LT parahippocampal 1.13 -0.22

RPF frontalpole 1.10 -0.23



 16 

which largely overlapped with the effects from the lying supine vs. sitting upright 

contrast. On the other hand, we hardly found any significant brain changes between 

reclining and sitting upright. Effect sizes were large across all significant tests, with a 

mean Cohen's d of .95 (SD = .23). This overarching pattern of results indicates that the 

oscillatory dynamics of the resting brain differ dramatically between supine posture and 

more upright body positions. 

 EEG studies have associated high-frequency activity with cognitive processing 

(e.g., alert mental states) (Kaiser & Lutzenberger, 2005), and lower-frequency activity 

with relaxation (e.g., drowsy states) (Strijkstra et al., 2003). Thus, the present findings 

suggest that the brain may linger in a mode of decreased vigilance when supine compared 

to when upright. In line with this interpretation and related accounts (e.g., Jones & Dean, 

2004), our ECG data showed lower heart rate in the supine posture.  

 Our present findings accord with previous reports investigating the influence of 

posture on resting-state brain function. The collective evidence indicates that upright 

postures are associated with greater power in high-frequency bands (Thibault et al., 2014; 

Chang et al., 2011; Cole et al., 1989) and reduced power in low-frequency bands (Chang 

et al., 2011; Spironelli et al., 2016). Our earlier sensor-level analysis of the current 

dataset also showed high-gamma increases in more upright postures, but these effects 

were restricted to smaller regions of the left hemisphere (Thibault et al., 2016). In sensor-

level MEG analysis, however, variation in head distance from the sensors presents a 

substantial confound (see discussion in Thibault et al., 2016). This methodological caveat 

may explain why our earlier sensor-level analysis was unable to pick up the more robust, 

distributed effects we observed here using a source-localization approach.  
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 In terms of regional brain activity, our present observations coalesce with the 

findings of an earlier account using multi-postural PET (Ouchi et al., 1999). Congruent 

with our observation of greater upright gamma power in parieto-occipital areas, this PET 

study reported increased cerebral blood flow to visual areas when standing upright 

compared to when lying down. Yet, here we observed a more distributed pattern of high-

frequency activity—extending beyond the visual areas to a large portion of posterior 

cortex. In addition, we found differences in low-frequency bands among frontal regions, 

which were absent from our previous EEG results (Thibault et al., 2014). In that EEG 

study, however, participants assumed body positions for shorter time periods and 

received instructions from experimenters every 30 s to change behavioral condition (e.g., 

to open or close their eyes for the next block). Thus, participants may have had less time 

to settle into a relaxed state during the supine position, which may have limited the 

differences in low-frequency power between postures. Of particular interest, the present 

source analysis revealed alterations in core regions of the default-mode network (e.g., 

posterior cingulate, precuneus, inferior parietal lobule, parahippocampus, rostral anterior 

cingulate), which has been proposed as a central hub of anatomical and functional 

organization in the human brain (ven den Heuvel & Sporns, 2013).  

 Certain physiological parameters may have played a role in shaping our results. 

Muscle activity exerts an influence on signals in the gamma range (Muthukumaraswamy, 

2013) and thus might have contributed to the posterior high frequency activity. In 

addition, persistent eye-blink artefacts might have survived our standard data cleaning 

procedures and thus contributed to the orbital activity. On the other hand, systematic 

differences in head position are unlikely to explain the present results. Although the back 

of the head might have been closer to the sensors in the supine position, our source-space 
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analysis accounts for variations in head placement using participant-specific 3-D 

digitization of cranium size and shape, head localizer coils, and MRI-guided anatomy per 

individual. Moreover, we would expect opposing results in frontal versus parieto-

occipital regions if a consistent shift toward occipital head placement drove neural 

difference. In particular, we would expect higher occipital signal in the supine posture 

because these regions would be closer to the sensors. Instead, our results show lower 

parieto-occipital power in the supine posture. Regardless of the underlying causes, the 

alterations we observed hold broad implications for the field of neuroimaging. 

 Orthostatic caveats take on particular importance as the domain of cognitive 

neuroscience moves toward triangulating data from multiple imaging modalities 

involving different body stances (Agam et al., 2011; Calhoun & Sui, 2016; Lei et al., 

2011; Garcés et al., 2016). Even within the realm of MEG, posture varies from study to 

study: whereas upright positions are most typical, supine measurements are also common 

in multimodal imaging contexts (e.g., Larson-Prior et al., 2013; Carhart-Harris et al., 

2016) and when investigating specific clinical populations (e.g., epilepsy: Pellegrino et 

al., 2016; multiple sclerosis: Schoonheim et al., 2013). Unfortunately, many a MEG 

report neglects to specify the acquisition posture. In addition, our main finding that 

upright posture is associated with higher parieto-occipital gamma power has direct 

relevance for comparisons between upright EEG/MEG data and supine fMRI scans. 

Intracranial, EEG, and MEG recordings have implicated gamma band activity in a host of 

cognitive functions including attention, memory, and sensory processing (Jensen et al., 

2007). Moreover, our MEG data are relevant for fMRI studies because the BOLD signal, 

which serves as a proxy for neural activity in fMRI, correlates with gamma activity 

(Niessing et al., 2005; Nir et al., 2007). Our findings thus highlight how sitting upright or 
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lying down—body positions associated with common imaging modalities—impact the 

resultant data acquired via those technologies. The current account paves the road to a 

more scientific understanding of posture as a ubiquitous, albeit little acknowledged, 

procedural caveat in cognitive neuroscience research. 
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