integrate_ai_sdk
Separate the cardinality reduction part from sklearn's OneHotEncoder, and wrap it as a standalone transformer. In addition, we support specifying max_categories as a fraction between (0, 1), in which case, it is considered as the threshold for cumulative frequency
Define the attributes that are required for calling .transform()
CHANGE: return the input_features directly since this transformer does not add/remove columns.
Inherited Members
- sklearn.preprocessing._encoders.OneHotEncoder
- categories
- sparse_output
- dtype
- handle_unknown
- drop
- min_frequency
- max_categories
- feature_name_combiner
- inverse_transform
- sklearn.preprocessing._encoders._BaseEncoder
- infrequent_categories_
- sklearn.base.TransformerMixin
- fit_transform
- sklearn.utils._set_output._SetOutputMixin
- set_output
- sklearn.base.BaseEstimator
- get_params
- set_params
- sklearn.utils._metadata_requests._MetadataRequester
- get_metadata_routing
- integrate_ai_sdk.base_class.IaiBaseTransformer
- state_dict
- load_state_dict
Inherit from IAICardinalityReducer such that this also allows max_categories to be a fraction between (0, 1)
Define the attributes that are required for calling .transform()
CHANGE: return the input_features directly since this transformer does not add/remove columns.
Inherited Members
- sklearn.preprocessing._encoders.OneHotEncoder
- categories
- sparse_output
- dtype
- handle_unknown
- drop
- min_frequency
- max_categories
- feature_name_combiner
- inverse_transform
- sklearn.preprocessing._encoders._BaseEncoder
- infrequent_categories_
- sklearn.base.TransformerMixin
- fit_transform
- sklearn.utils._set_output._SetOutputMixin
- set_output
- sklearn.base.BaseEstimator
- get_params
- set_params
- sklearn.utils._metadata_requests._MetadataRequester
- get_metadata_routing
- integrate_ai_sdk.base_class.IaiBaseTransformer
- state_dict
- load_state_dict
Standardize features by removing the mean and scaling to unit variance.
Define the attributes that are required for calling .transform()
Perform standardization by centering and scaling.
Parameters
X : {array-like, sparse matrix of shape (n_samples, n_features) The data used to scale along the features axis. copy : bool, default=None Copy the input X or not.
Returns
X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features) Transformed array.
A descriptor for request methods.
New in version 1.3.
Parameters
name : str
The name of the method for which the request function should be
created, e.g. "fit" would create a set_fit_request function.
keys : list of str
A list of strings which are accepted parameters by the created
function, e.g. ["sample_weight"] if the corresponding method
accepts it as a metadata.
validate_keys : bool, default=True Whether to check if the requested parameters fit the actual parameters of the method.
Notes
This class is a descriptor 1 and uses PEP-362 to set the signature of the returned function 2.
References
A descriptor for request methods.
New in version 1.3.
Parameters
name : str
The name of the method for which the request function should be
created, e.g. "fit" would create a set_fit_request function.
keys : list of str
A list of strings which are accepted parameters by the created
function, e.g. ["sample_weight"] if the corresponding method
accepts it as a metadata.
validate_keys : bool, default=True Whether to check if the requested parameters fit the actual parameters of the method.
Notes
This class is a descriptor 1 and uses PEP-362 to set the signature of the returned function 2.
References
A descriptor for request methods.
New in version 1.3.
Parameters
name : str
The name of the method for which the request function should be
created, e.g. "fit" would create a set_fit_request function.
keys : list of str
A list of strings which are accepted parameters by the created
function, e.g. ["sample_weight"] if the corresponding method
accepts it as a metadata.
validate_keys : bool, default=True Whether to check if the requested parameters fit the actual parameters of the method.
Notes
This class is a descriptor 1 and uses PEP-362 to set the signature of the returned function 2.
References
Inherited Members
- sklearn.preprocessing._data.StandardScaler
- with_mean
- with_std
- copy
- fit
- partial_fit
- inverse_transform
- set_transform_request
- sklearn.base.OneToOneFeatureMixin
- get_feature_names_out
- sklearn.base.TransformerMixin
- fit_transform
- sklearn.utils._set_output._SetOutputMixin
- set_output
- sklearn.base.BaseEstimator
- get_params
- set_params
- sklearn.utils._metadata_requests._MetadataRequester
- get_metadata_routing
- integrate_ai_sdk.base_class.IaiBaseTransformer
- state_dict
- load_state_dict
Impute missing values in the column based on various strategies
Define the attributes that are required for calling .transform()
Inherited Members
- sklearn.impute._base.SimpleImputer
- strategy
- fill_value
- copy
- fit
- transform
- inverse_transform
- get_feature_names_out
- sklearn.impute._base._BaseImputer
- missing_values
- add_indicator
- keep_empty_features
- sklearn.base.TransformerMixin
- fit_transform
- sklearn.utils._set_output._SetOutputMixin
- set_output
- sklearn.base.BaseEstimator
- get_params
- set_params
- sklearn.utils._metadata_requests._MetadataRequester
- get_metadata_routing
- integrate_ai_sdk.base_class.IaiBaseTransformer
- state_dict
- load_state_dict