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ABSTRACT 

 
 

A COMPARATIVE STUDY OF FORMATION CONTROL AT THE  
EARTH-MOON L2 LIBRATION POINT 

 
Waqas A. Manzoor, Master of Applied Science, Aerospace Engineering 

Ryerson University, Toronto, 2011 

 

 

This thesis examines the performance of control methods that fall under the optimal, 

predictive and adaptive classifications, subjected to sensor/actuator faults, and presents 

approaches to apply them to non-affine systems utilizing single thruster and solar sail 

actuator configurations.  The system of interest consists of a leader-follower satellite 

formation near the L2 point of the Earth-Moon system.  The control methods studied here 

include those which are emerging in the space systems literature, and are evaluated in 

terms of their transient and steady state responses, and control input variation.  Numerical 

simulation of faults affecting both sensor and propulsion actuator systems are conducted, 

along with an experiment to validate the results in a laboratory environment.  The 

observed behavioral characteristics in the simulations match those demonstrated in the 

experiment.  Alternative representations of dynamics were explored for controller design 

of non-affine systems.  The research presented herein provides support for the usage of 

the proposed control strategies in future space applications.  
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CHAPTER 1  

Introduction 
 

 

 

 

1.1 Introduction 

 

Satellite technology in one way or another has historically, and will likely continue to be, 

a key component in social prosperity.  From the economy, to education, to defense, 

modern humanity’s organizational structure is dependent on processes relating to the 

acquisition and transfer of information to a level only currently achievable by the 

employment of satellite technology.  Current and future satellite missions are planned to 

utilize orbits and formation configurations never before attempted, whether it is for new 

observation points of the universe or for communication strategies for remote parts of the 

Earth.  The dynamics and control of satellites continues to be an active area of research 

and innovation today.   Major space agencies including NASA, ESA and JAXA, and 

other organizations such as DARPA, not to mention universities worldwide, have taken 

initiatives to implement miniature multi-satellite clusters flying in formation to achieve 

the same tasks traditionally accomplished by larger complex single satellites.  The 

advantages of this emerging model involves increased system reliability and the use of 

smaller rockets for orbital deployment; for example, Small Lift Launch Vehicle systems 

like the Pegasus, Athena II or Kosmos-3M rockets.  Such satellite systems categorically 

require autonomous operation, putting high priority on seeking superior control methods 

as they emerge.  The field of control systems spans across all disciplines of engineering, 

and periodically bestows the opportunity to cross-apply developments between diverse 

industries.  Enabled exclusively by advances in control technologies, miniature satellites 

and formation flying has become a more reliable option.  Control algorithms may be 
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designed to be optimal, robust, predictive and adaptive, all categories of which are 

covered in the research presented herein.  

 

1.2 Literature Review 

 

Several scientific missions have flown to Lagrangian points of the Sun-Earth system that 

have measurable economic advantage.  A good example of such a mission is 

GEOSTORM, now a system that can act as an early warning system to prevent potential 

disasters such as the 1989 Quebec Blackout.  That blackout was caused by an abnormally 

large amount of solar wind forcing an oscillation of the Earth’s magnetic field and 

causing a sharp unexpected overload in current flowing through Upper North American 

power lines.  Such missions are clearly very useful and therefore deserve special 

attention. 

 

The region about the Earth-Moon L2 collinear libration point was chosen to be the system 

on which the investigated control methods are applied.  This is situated on the lunar far 

side and is an ideal location for communications satellites.  Furthermore, it will 

potentially be of great interest to space infrastructure development projects as an ideal 

observation point.  The proposed depot-based space transportation architecture 

considered this point to be an ideal location for an in-space fuel depot [5].  Orbits at 

Lagrangian points are actively exploited in the Sun-Earth system, with six past and five 

planned missions.  The ARTEMIS mission, initiated in 2008, is only currently in flight 

with one of its objectives being to explore the L1 and L2 points of the Earth-Moon system 

and  attempt insertion into a Lissajous trajectory.  NASA is now currently planning to 

insert a communication satellite on the far side of the moon, a mission first conceived in 

1968 by Farquhar [6].  There is considerable scope for research in the development of 

control systems subjected to external disturbances and sensor/actuator limitations. 
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1.2.1 Dynamics and Controls 

 
Investigating the scope of control methods for implementation on a particular spaceflight 

application is a task a number of researchers have performed.  Breger [16] presents an 

example of one of the recent studies that has brought the Model Predictive Control 

(MPC) control method into space systems.  One of the key conclusions of interest to the 

writer is that it was specified that the MPC control method out-performed the Linear 

Quadratic Regulator (LQR) control method in his system.  The effects of sensor noise 

was also studied where the error box of the trajectory and maximum control input was 

plotted over a range of simulated sensor errors.  Farrar [23] presents a comparative 

analysis of formation flying at Earth-Moon libration points that seeks to establish which 

of the Proportional-Integral-Derivative (PID), H∞-norm-based (H∞) or Sliding Mode 

Control (SMC) methods result in greater fuel efficiency while subjected to perturbations 

from the gravitational influence of Jupiter, Solar Radiation Pressure (SRP) (as a 

perturbation) and noise.  Xibin [25] formulates a general approach in setting up an MPC 

algorithm for use in formation flying in general and Bilodeau [24] expands this for 

formation flying in eccentric orbits with a refined optimization algorithm.  Strategies and 

implementation issues of the selected model-based control methods were presented in 

Tewari [5] and Slotine [6], while system dynamics were given in Tewari [1], Curtis [2] 

and Kumar [4].   The adaptive controller considered in this study is unique and follows 

from the same family of Adaptive Sliding Mode controllers presented by Godard [21].   

 

The work of McInnes [12,14,15,35,36,38,40,52] included deriving families of reference 

trajectories, proposing control angle definitions for underactuated control and 

demonstration of control using very small control forces at both lunar-side collinear 

Lagrangian points.  He presents an analytical approach to solving out-of-plane dynamics 

and maximizing for the nominal out-of-plane control angle for displacement 

perpendicular to the orbital plane.  Wong [11] uses solar radiation pressure to control a 

satellite at the L4 Lagrangian point subjected to the modeled disturbance of the Sun using 

Linear Quadratic Regulator and Sliding-Mode Control.  Shahid [20] includes the 

disturbances derived from NASA’s ephemeris model of the Solar System in his control of 
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a satellite at the Sun-Earth/Moon L2 Lagrangian point.  Li [10] very thoroughly covers 

the derivation of reference trajectories in both the Sun-Earth and Earth-Moon systems 

with the inclusion of SRP into the dynamics, as well as the model of solar radiation 

pressure and procedure for deriving nominal sail size.   

 

1.2.2 Propulsion and External Disturbances 

 

Thrust vectoring is a technique used mainly by the aerospace industry to achieve flight 

path stability or high-performance maneuverability of rockets, fighter aircraft, missiles, 

autonomous underwater vehicles (AUVs) and some satellites.  It involves redirecting the 

line-of-thrust at the rocket engine itself, by rotating or changing the geometry of the 

exhaust nozzle.  The advantage of this is that a single thruster can be used to apply a 

control force (or moment) along (or about) multiple axis.  Unlike for aeronautical 

vehicles, aerodynamic stiffness and damping effects for space vehicles are not a factor, 

and the coupling of attitude and translational dynamics is easily avoidable; hence, a 

separate attitude control system is assumed and the control angles are calculated in the 

L2-centered coordinate frame.  Alternatively, it can be assumed that the spacecraft center 

of mass and line-of-thrust always coincide.  The challenge of formulating the equations 

of motion compatible with the control method designs was solved following the work 

presented by Shahid [20] (which was applied to a different problem).  Currently, all 

known control methods take in only affine control inputs, wherein the control inputs are 

coupled into the system dynamics such that it can be represented state-space form.  On 

the other hand, Solar Radiation Pressure (SRP) as a means of control is the use of 

photonic momentum transfer from sunlight which is exerted on a reflective surface, or 

“solar sail”, to induce motion.  The primary advantage of this method of propulsion is 

that it does not require onboard propellant.  In 2009, JAXA has already launched its 

“Interplanetary Kite-craft Accelerated by Radiation Of the Sun” (IKAROS) mission 

while NASA has attempted to deploy their NanoSail-D unit as a module of its FASTSAT 

satellite.  These are the first experimental missions of their kind.  They still do not 
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involve formation flying or orbits about Lagrangian points.  The development of control 

methods, and strategies to apply them, is an active area of research. 

 

How et al [16,33] reports several observations of formation flying system behavior 

subjected to sensor noise.  Among the conclusions of that study that was echoed therein 

was that the average control effort increases in direct proportion with the magnitude of 

sensor noise.  Sharma [47] and Ni [51] go into detail about what kinds of noise one can 

expect in space applications, with information about causes of such, going into responses 

of electronic components perturbed into off-design conditions.  Further insight was 

gained as to the selection of appropriate noise magnitude and frequency from noting the 

values used by Breger [16,27] in his similar analysis for formation flying in Earth orbit, 

and also from the technical report by Miller [22] on Apollo’s flight experience.  Breger 

[16,27] provides an analysis of Model Predictive Control, also in Earth orbit, that studies 

the effect of sensor noise in the ultimate positional error of the spacecraft trajectory – 

termed the “error box”.  Faults in actuators are also commonly simulated, as was done so 

by Godard [34] for the cases of a sensor inoperative condition and unsteady thrust.  

Specifically for thrusters, Sutton and Biblarz [46] explain the reality of unsteadiness in 

thrust that is due to combustion dynamics and turbulent expansion of gas leaving the 

thrust chamber. 

 

 

1.3 Motivation 

 

As the region immediately around Earth continues to be occupied by more and more 

artificial satellites and space junk, an alternative must be sought which can provide the 

solution to these challenges currently being faced, or challenges that are expected in the 

near future.  The Lagrangian points in this regard are very promising regions for satellites 

to be situated.  Space technology has undergone great advancement that has benefited the 

quality of life for people all over the world.  This should continue, as there is still much 

more that can be done; for example, if a Lagrangian point satellite can be displaced out-
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of-plane by the polar radius of Earth, then why would it be required to keep inserting 

satellites in potentially less reliable and expensive Molniya orbits for constant line-of-

sight communication with near-polar regions?  By examples such as the one already 

discussed about GEOSTORM, and the historical lunar missions, it is well known that the 

capability of such endeavors does indeed exist, and needs only to be economically 

justified.  This thesis aims to contribute to this endeavor of helping move forward the 

technological readiness of advanced control strategies in various space applications.  

 

1.4 Objectives 

 

This section highlights what seems to be insufficient in the literature and how those gaps 

are filled.  These explanations are grouped by topic and given separately in terms of 

controller design, formation flying using thrust vectoring and formation flying using solar 

radiation pressure. 

 

1.4.1 Controller Design 

 

Three control methods are considered.  First, linear quadratic regulator (LQR) is applied 

to all simulations involving thrusters that can act along the three body-frame axes.  For 

thrust vectoring (single thruster) and solar sail propulsion, this method evolved into the 

more general time varying state dependent Riccati equation (SDRE).  These actuator 

configurations can only be modeled as time-varying plants given that the input matrix 

contains trigonometric functions with arguments that are time-varying.  Then, the model 

predictive control (MPC) method is applied.  Linear time-varying model predictive 

control (LTV-MPC) is applied to the appropriate non-affine plants.  The prediction and 

control horizons are used as tuning parameters and manipulated variables (control inputs) 

are left unconstrained.  Also, a unique form of a novel nonlinear adaptive controller is 

designed.  This method is a modification of one that was recently developed in [21] based 

on a Lyapunov function.  The control grain is defined to be a function of the adaptive 

parameter.  Although the LQR and MPC methods are based on linearized dynamics, the 



7 
 

correcting force is applied on the nonlinear plant.  In addition to the control methods, the 

analysis also involves analyzing controller performance against simulated sensor errors, 

sensor inoperative condition and unsteady thrust.  The magnitude of noise used in the 

numerical simulation for sensor measurement and unsteadiness of thrust is conservatively 

greater in comparison to the external disturbances the system would likely face in reality. 

 

1.4.2 Formation Flying Using Thrust Vectoring 

 

The differential equations governing the motion of the system become more complex 

when the effect of a single thruster variably couples with all translational degrees of 

freedom.  Equations of motion based on the third time derivative to describe motion are 

needed for the system to be affine without the model becoming an approximation.  This 

increase in order of the differential equations of motion accomplishes the necessary 

condition of the system being able to accept affine control inputs, which would not 

normally exist due to control angles being arguments of trigonometric functions.  In this 

study the technique from [20] is extended to dynamics which involve non-constant Sun-

line. 

 

1.4.3 Formation Flying Using Solar Radiation Pressure 

 

Farquhar’s original idea of a halo orbit on the lunar far side being a suitable location for a 

communication satellite is combined with the displaced orbit concept presented in [12].  

The dynamics presented in [12] considered an under-actuated sail and only went as far as 

defining a reference trajectory.  The writer then uses this method, but with a suitable 

fully-actuated convention defined in [20] for the sail and successfully executed the 

concept in simulation.  Using a suitable nominal sail size, deduced from the reference 

trajectory formulation in [10], and a suitable nominal control angles following the 

procedure presented in [12], it was shown that formation flying is achievable in 

numerical simulation.  The controller was also arranged to allow for nominal out-of-plane 

displacement for other applications.  
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1.5 Thesis Outline 

 

This section describes the structure of the thesis.  An organizational flowchart describing 

the flow of this thesis is presented in Figure 1.1.  The problem and goal of the research, 

including a literature review, has already been provided thus far here in Chapter 1.  Next, 

before any controller is designed, the system model to be controlled is described in 

Chapter 2.  The equations of motion of the system are derived, arranged in a suitable 

form for controller application and a suitable reference trajectory proposed in this 

chapter.  Then in Chapters 3 to 6, simulation results are presented and performances are 

compared for the controllers in terms of maximum control force, maximum overshoot, 

steady state error and settling time.  Chapter 3 and Chapter 4 involve the utilization of 

thrusters along three body-frame axes, directly and in conjunction with an observer, 

respectively.  An observer is used to filter noise and provide estimated state variables for 

the controller to act on.  Additionally, Chapter 3 includes results of hardware-in-the-loop 

testing on the testbed described in Section 3.3.4.  The mathematical design of the 

considered control methods is given in Chapter 3 as well, whereas the theory presented in 

Chapter 4 is the design of the observer.  Chapter 5 and Chapter 6 comprise what is termed 

“advanced configurations”.  These involve actuator configurations that have not yet been 

applied in formation flying or orbital control at Lagrangian points.  Chapter 5 presents 

controller performance where the control algorithm involves reformulation of the 

representation of thrust vectoring dynamics in a form suitable for application of the 

control methods.  Chapter 6 is the same except that maneuvering is done using a solar 

sail.  The theory portion in these last two chapters involves linearization and derivation of 

equations of motion of an applicable form with specific definitions of control angles such 

that control using those configurations becomes possible.  Finally, Chapter 7 concludes 

the study presented in this thesis, and offers suggestions for future work to carry on this 

research. 
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Figure 1.1: Thesis Organization Flowchart 
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1.6 Summary  

 

In this study, a more relevant pool of control methods (in comparison with those 

presented in literature) and three different force generating mechanisms are analyzed with 

the evaluation of their performance against sensor and propulsion actuator faults.  The 

main contributions of this thesis to the field of satellite control are listed below: 

1. Development of linear and nonlinear control algorithms for formation control 

about the Earth-Moon L2 point using control methods that are gaining importance 

in space applications, namely: 

(a) Infinite Horizon Unconstrained Model Predictive Control  

(LTI-MPC, LTV-MPC) 

(b) Lyapunov-based Direct Gain Tuning Adaptive Control (Adaptive) 

(c) Linear Quadratic Regulator (LQR), or State Dependent Riccati Equation 

(SDRE) as the LTV version 

(d) In conjunction with the observer: Linear Quadratic Estimator  

(LQE, basically a Kalman Filter) 

 

2. Validation of control methods through implementation on a space systems testing 

platform called the Satellite Airbed Formation Experiment (SAFE), in the Space 

Systems Dynamics & Control Group (SSDC) laboratory at Ryerson University. 

 

3. Formulating dynamics that enable the use of thrust vectoring and SRP based 

propulsion actuation, having inherently affine control inputs, for the control of a 

follower satellite’s trajectory about a leader satellite following a nonlinear 

reference trajectory. 

 

4. Analysis of the performance of control systems subjected to sensor noise, sensor 

offline and propulsion actuator degradation. 
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CHAPTER 2  

System Dynamics  
 
 
 
 

 

2.1 Introduction 

 

In this chapter, a brief review of the equations of motion of the Earth-Moon circular 

restricted three-body system is derived.  An analytical solution to the linearized equations 

of motion about the L2 point is then determined from which two zero-force candidate 

reference trajectories are deduced, namely, the Lissajous and Lyapunov orbits.  

Mathematical background and trajectory simulation for the non-natural Halo orbit are 

also presented.  Figure 2.1 is an illustration of the position of the L2 point relative to the 

three-body system to give the reader a better understanding. 

 

 

Figure 2.1: Location of L2 Point 

 

2.2 Equations of Motion 

Equating Newton’s Second Law of Motion with the Law of Universal Gravitation and 

dividing through by the mass of the ith body to obtain specific force, the N-body general 
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equation of motion is produced, showing the force of gravity acting on the ith mass by the 

others: 

࢏ࡲ

݉௜
ൌ ሷࡾ ࢏ ൌ ܩ ෍

࢐࢓

ห ௝ܴ െ ܴ௜ห
ଷ ൫࢐ࡾ െ ൯࢏ࡾ

ே

௝ஷ௜
௜ୀଵ

 (2.1) 

In the case of the circular restricted three-body problem, N = 3.  G ≈ 6.67428 × 10-11 

N(m/kg)2 is the universal gravitational constant.  The vector difference of the position 

vectors in the brackets is the separation distance between centers of mass of the 

respective bodies.  What follows next is something that was first realized by Lagrange, 

after whom the equilibrium solution of the three body problem is named.  Expansion of 

this equation shall now be done for the third mass which represents the satellite.  The 

following equation describes the motion of the satellite in the presence of the two 

primaries (Earth and Moon):  

ሷࡾ ૜ ൌ ܩ ൤
૚࢓

|ܴଵ െ ܴଷ|ଷ ሺࡾ૚ െ ૜ሻࡾ ൅
݉ଶ

|ܴଶ െ ܴଷ|ଷ ሺࡾ૛ െ  ૜ሻ൨ (2.2)ࡾ

The subscript on the left-hand side will hereafter be dropped for convenience, as the 

subject of interest is known to be the satellite motion.  Nondimensionalization of the 

equation is now in order, given important reasons which include: 

(a) Overall simplification of the equations of motion. 

(b) Great reduction of computational effort/time in simulations with a unit 

nondimensional time interval larger than that of the true second; a real 

second-by-second simulation of a one month orbit, for example, is very 

inefficient. 

(c) Avoidance of potential singularities resulting from machine truncation of 

numbers following from (b); thus, an improvement of accuracy. 

(d) It is necessary for applicability in most model-based control methods, 

including those designed in this study. 
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All distances are normalized by the separation distance of the primary masses, denoted by 

R12, and all masses are normalized by the combined mass also of the primaries (m1 + m2); 

let the nondimensional mass of the second largest body (m2) be denoted by μ.  

Geometrically, the vector difference between the position of body i ( = 1, 2 ) and the 

satellite (body 3) is equal to the position vector of the satellite from body i, hereafter 

denoted by ri. 

ߤ ൌ
݉ଶ

݉ଵ ൅ ݉ଶ
, ࢏ࡾ െ ૜ࡾ ൌ  (2.3) ࢏࢘

Applying the Law of Universal Gravitation at the center of mass of the system, the 

nondimensional value of the gravitational constant is sought such that the angular 

velocities of the primary bodies about the center of mass would equal one. The frame of 

reference is rotating at this angular velocity with the primaries.  Let Σa denote the net 

acceleration of all bodies in the system towards the center of mass.  Also, the mass of the 

satellite is negligible compared to the masses of the primaries; m3/(m1+m2) ≈ 0. 

෍ ࢇ ൌ ܩ ቈ
݉ଵ ൅ ݉ଶ

|ܴଵଶ
ଷ |

૚૛ࡾ ൅
݉ଷ

|ܴଵଷ
ଷ |

૚૜቉ࡾ ൎ ܩ
݉ଵ ൅ ݉ଶ

|ܴଵଶ
ଷ |

 ૚૛ (2.4)ࡾ

Eq. (2.4) rearranges to give the square of angular velocity, 

߱ଶ ൌ ∑ ࢇ
૚૛ࡾ

ൗ ൎ ܩ
݉ଵ ൅ ݉ଶ

|ܴଵଶ
ଷ |

 (2.5) 

where ߱ is the rotation rate of the primaries about the barycenter of the three-body 

system.  One nondimensional unit of time is then equal to 1/߱.  Another simplifying 

conclusion is realized by nondimensionalizing the equation describing the system 

barycenter.  Note that R1 and R2 are always fixed along the x axis and that the 

acceleration due to gravity acting in the y and z directions will depend on the respective 

nonzero y and z displacements.  Let (iመ, jመ, k෠) represent the direction vectors that define the 

axes of the rotating coordinate frame. 



14 
 

૚݉ଵࡾ ൌ െࡾ૛݉ଶ (2.6a) 

 
૚ࡾ

૚૛ࡾ
·

݉ଵ

݉ଵ ൅ ݉ଶ
ൌ െ

૛ࡾ

૚૛ࡾ
·

݉ଶ

݉ଵ ൅ ݉ଶ
 (2.6b) 

૚ࡾ   ൌ ߤ · ଙ̂ ൅ ݕ · ଚ̂ ൅ ݖ ·  ෡ (2.6c)࢑

૛ࡾ   ൌ ߤ െ 1 · ଙ̂ ൅ ݕ · ଚ̂ ൅ ݖ ·  ෡ (2.6d)࢑

Substituting these results and notations in Eq. (2.2) and decomposing the vector in three 

dimensional configuration space R3, the gravitational component of the satellite’s 

acceleration becomes 

ሷܺ௚௥௔௩௜௧௬ ൌ െ
ሺ1 െ ሻሺܺߤ െ ሻߤ

ଵ|ଷݎ| െ
ሺ1ߤ െ ߤ െ ܺሻ

ଶ|ଷݎ|  (2.7a)

ሷܻ௚௥௔௩௜௧௬ ൌ െ
ሺ1 െ ሻܻߤ

ଵ|ଷݎ| െ
ܻߤ

ଶ|ଷ (2.7b)ݎ|

ሷܼ௚௥௔௩௜௧௬ ൌ െ
ሺ1 െ ሻܼߤ

ଵ|ଷݎ| െ
ܼߤ

ଶ|ଷ (2.7c)ݎ|

Superimposing Eq. (2.7) with the centrifugal and Coriolis accelerations in this rotating 

frame and nondimensionalizing it (ω = 1) yields 

ሷܺ ൌ 2 ሶܻ ൅ ܺ െ
ሺ1 െ ሻሺܺߤ െ ሻߤ

ଵ|ଷݎ| െ
ሺ1ߤ െ ߤ െ ܺሻ

ଶ|ଷݎ|  (2.8a)

ሷܻ ൌ െ2 ሶܺ ൅ ܻ െ
ሺ1 െ ሻܻߤ

ଵ|ଷݎ| െ
ܻߤ

ଶ|ଷ (2.8b)ݎ|
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ሷܼ ൌ െ
ሺ1 െ ሻܼߤ

ଵ|ଷݎ| െ
ܼߤ

ଶ|ଷ (2.8c)ݎ|

Eqs. (2.8) are the equations of motion for the circular restricted three body system.  They 

describe the motion of an uncontrolled (free) satellite under the influence of two other 

(celestial) bodies, as long as the masses of the other bodies are much greater than the 

mass of the satellite and that the bodies keep a fairly constant separation distance (this 

will be case when the m2 has an orbital eccentricity of approximately zero about m1).  The 

modification of these equations of motion to include the effect of control forces will be 

presented in Section 2.4. 

 

2.3 Equilibrium Points 

Equilibrium points are defined as a set wherein the velocity and acceleration of the 

dynamical system is zero.  This corresponds to the minima of a Lyapunov function with 

suitable conditions of stability centered over the origin of the phase-plane representing 

the point of minimum pseudo-potential energy.  Applying this concept to Eq. (2.8), the 

resulting solution can be categorized in two groups.  Firstly, all equilibrium points lie on 

the plane of the primaries; ݖ  ൌ 0.  The first group follows from the easily noted 

solution ݕ ൌ 0, which from numerical computation establishes the collinear libration 

points Lଵሺെ0.83692,0ሻ, Lଶሺെ1.15568,0ሻ, and Lଷሺ1.00506, ሻ.  The second group is 

comprised of the triangular libration points which follow from elementary manipulation 

of the equations: Lସሺെ0.4875, √1.5ሻ, Lହሺെ0.4875, െ√1.5ሻ.  The names of these groups 

have to do with the geometry that they make out with respect to the primaries, shown in 

Figure 2.2.  Note that when the mass difference of the primaries is great enough as is the 

case for the Earth-Moon system, the center of mass actually lies within m1.  In this study, 

only the L2 point is of concern due to its relevance in present and proposed missions, and 

potential applications. 
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Figure 2.2: Lagrangian Points 

 

2.4 Linearization 

Eqs. (2.8) are in a nonlinear form; they need to be linearized for stability analysis, 

reference trajectory determination and for the implementation of linear model-based 

control methods.  To do this, the first order binomial expansion of the nonlinear 

denominators of the gravitation terms is taken.  

ଵݎ
ିଷ ൎ

1
ሾሺݔ଴ െ ሻଶߤ ൅ ଴ݕ

ଶሿଷ/ଶ ଶݎ
ିଷ ൎ

1
ሾሺݔ଴ ൅ 1 െ ሻଶߤ ൅ ଴ݕ

ଶሿଷ/ଶ (2.9) 

The linearized term as a whole can then be represented as a constant: 
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ܿ ൎ
ሺ1 െ ሻߤ

ሾሺݔ଴ െ ሻଶߤ ൅ ଴ݕ
ଶሿିଷ/ଶ ൅

ߤ
ሾሺݔ଴ ൅ 1 െ ሻଶߤ ൅ ଴ݕ

ଶሿିଷ/ଶ (2.10)

After linearizing about y = 0 for the collinear equilibrium points, the state space matrix 

equation can be written as  

ۏ
ێ
ێ
ێ
ێ
ۍ
ሶݔ
ሶݕ
ሶݖ
ሷݔ
ሷݕ
ሷݖ ے

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ૙૜ൈ૜ ૜ൈ૜ࡵ

ሺ1 ൅ 2ܿሻ 0 0
0 െሺܿ െ 1ሻ 0
0 0 െܿ

0 2 0
െ2 0 0
0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ې

·

ۏ
ێ
ێ
ێ
ۍ
ݔ
ݕ
ݖ
ሶݔ
ሶݕ
ሶݖ ے

ۑ
ۑ
ۑ
ې

൅  ࢛࡮

ؠ        ࢄ࡭ ൅  ࢛࡮

(2.11)

 

where B is the control coupling matrix and u is the control input.  Linearization of 

relative equations is given in section 2.5. 

 
 

2.5 Reference Trajectory 

Extracting the oscillatory frequencies from the eigenvalues from the characteristic 

equation of state dynamics matrix, the resulting incommensurable roots suggest that one 

can expect such dynamical systems to incorporate zero-force trajectories that can be used 

as a feasible reference trajectory which is periodic or quasi-periodic in nature.  The 

unforced solution of the time invariant system, Eq. (2.11), is given by  

ሻݐሺࢄ ൌ ሺ0ሻࢄ௧࡭݁ ൌ ෍ ݁ఒ೔௧ࢗ௜࢖௜
ሺ0ሻࢄ்

଺

௜ୀଵ

 (2.12)

where qi and pi are the right and left eigenvectors of the state dynamics matrix, 

respectively, corresponding to the ith eigenvalue. 
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After further expanding Eq. (2.12), with Euler’s formula applied to the eλ for imaginary λ 

(marginally stable poles), the remaining exponential terms from non-imaginary, positive 

eigenvalues can be cancelled out using the initial conditions for velocity as: 

ሶሺ0ሻݔ ൌ
߱௫௬

ߢ
ሺ0ሻ (2.13a)ݕ

ሶሺ0ሻݕ ൌ െ߱ߢ௫௬ݔሺ0ሻ (2.13b)

where ߢ ൌ
ఠೣ೤

మିሺଵାଶ௖ሻ

ଶఠೣ೤
, ߱௫௬ is the frequency from the imaginary axis eigenvalues 

corresponding to the in-plane mode of oscillation of the unforced system, and ߱௭ is the 

frequency corresponding to the out-of-plane eigenvalues.  The remaining expansion of 

Eq. (2.12) gives the bounded solution to Eq. (2.11) and can be used as a zero-fuel 

reference trajectory. 

ሻݐሺݔ ൌ ሺ0ሻݔ cos൫߱௫௬ݐ൯ ൅ ൯ (2.14a)ݐ൫߱௫௬݊݅ݏሺ0ሻݕଵିߢ

ሻݐሺݕ ൌ ሺ0ሻݕ cos൫߱௫௬ݐ൯ െ ൯ (2.14b)ݐ൫߱௫௬݊݅ݏሺ0ሻݔߢ

ሻݐሺݖ ൌ ሺ0ሻݖ cosሺ߱௭ݐሻ ൅ ߱௭
ିଵݖሶሺ0ሻ݊݅ݏሺ߱௭ݐሻ (2.14c)

By selecting initial conditions ݔሺ0ሻ ൌ ሺ0ሻݖ ൌ ሶሺ0ሻݖ ൌ 0, a candidate reference trajectory 

becomes  

ሻݐ௥ሺݔ ൌ െ݊݅ݏܣ൫߱௫௬ݐ൯ (2.15a)

ሻݐ௥ሺݕ ൌ െݏ݋ܿܣߢ൫߱௫௬ݐ൯ (2.15b)

ሻݐ௥ሺݖ ൌ 0 (2.15c)

Note, Eq. (2.14) is a periodic orbit that lies entirely on the orbital plane of the primaries, 

which by definition is called a Lyapunov orbit.  Following the type of reference trajectory 

chosen by Li [10], and formation size used in [4,9-11], A ൌ 3.433 was chosen for this 
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study to maintain 10 km on the major axis.  This elliptical trajectory has an eccentricity 

of 0.9392.   

It is also possible to include an out-of-plane oscillation while still maintaining the zero-

fuel property of the orbit.  If the initial velocity condition along the z dimension was 

ሶሺ0ሻݖ ൌ െ߱௭ݕሺ0ሻ, then following Eq. (2.14c), (2.15c) would become  

ሻݐ௥ሺݖ ൌ െ݊݅ݏܣߢሺ߱௭ݐሻ (2.16)

This trajectory, defined by Eqs. (2.15a, (2.15b) and (2.16) is known as a Lissajous orbit.  

Since the ratio of in-plane and out-of-plane frequencies is not a rational number, the 

trajectory never closes and is thus referred to as a “quasi-periodic” orbit.  However, if the 

condition ߱௭ ൌ ߱௫௬ is enforced, then the trajectory becomes completely closed (and thus 

periodic).  Such a trajectory is referred to as a Halo orbit because it displays a projected 

circle about the x axis, thus seeming to trace a halo around a primary as viewed from the 

other primary.  The advantage of a Halo orbit over a Lissajous orbit is that the spacecraft 

will never be in eclipse by m2, maintaining an unobstructed sightline with m1; the 

disadvantage is that the enforced condition is not a natural part of the solution to the 

equations of motion, requiring the continuous utilization of control force. 

The reference trajectory is derived for the case where solar radiation pressure is used as a 

means to control a spacecraft.  Since the presence of the solar sail implies a constant 

force applied to the satellite, with a magnitude proportional to that of the nominal sail 

area, it will affect the nominal motion.  This affect is sinusoidal due to the constant 

rotation of the Sun-line vector relative to the spacecraft.  

ሷ௡ݔ െ ሶ௡ݕ2 െ ሺ1 ൅ 2ܿሻݔ௡ ൌ ௡ܣ cosሺ߱ݐሻ (2.17a)

ሷ௡ݕ ൅ ሶ௡ݔ2 െ ሺܿ െ 1ሻݕ௡ ൌ െܣ௡ sinሺ߱ݐሻ (2.17b)

ሷ௡ݖ ൅ ௡ݖܿ ൌ 0  (2.17c)

The reference trajectory is defined to be a natural motion about the collinear equilibrium 

point so that control force would go to zero.  The reference trajectory will thus 

necessarily be a solution to the above differential equations of motion.  From Eq. (2.17), 
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describing the nominal motion, it is expected that the general solution of the differential 

equation will be of the following form. 

ݔ ൌ ܽ௡ cosሺ߱ݐሻ (2.18a)

ݕ ൌ ܾ௡ cosሺ߱ݐሻ (2.18b)

ݖ ൌ (2.18c) .ݐݏ݊݋ܿ

Therefore, Eq. (2.18) is a reference trajectory.  Note that in Eq. (2.18c), the constant 

value is usually zero, but may be a non-zero value so long as the sail maintains a 

nominally non-perpendicular angle between its surface and the plane of the primaries.  

Coefficients, which represent the amplitudes of motion, must first be solved before the 

trajectory can actually be used in the controller.  This is done by taking Eq. (2.18) and its 

time derivatives representing the reference velocity and acceleration, and substituting 

then back into Eq. (2.17).  Then the equations are solved simultaneously for the 

coefficients.  

 
(2.19a)

 
(2.19b)

Nominal motion along the z direction will remain fixed, either zero or at some out-of-

plane displacement.  Here, only the x and y equations were of importance.  For the L2 

point of the Earth-Moon system, ܽ௡≈ 0.0358An and ܾ௡≈ -0.6998An.  An area-to-mass 

ratio of 10 is assumed, requiring the nominal sail area to be kept at 10% of the value of 

the characteristic sail acceleration [10].  The eccentricity of this elliptical trajectory is 

0.09987. 

Figures 2.3-2.5 show the Lissajous, Halo and two Lyapunov trajectories (one for use with 

thrusters and the other with SRP).  The formation size of the Lissajous and Halo 

trajectories was chosen to be 150% of the average lunar radius. 



21 
 

 

Figure 2.3: Lissajous Trajectory 

 

Figure 2.4: Halo Trajectory 
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Figure 2.5: Lyapunov Trajectories 

 

2.6 Follower Satellite Equations of Motion for Formation Flying 

In this section, the relative equations of motion of the follower satellite are derived with 

respect to the leader satellite. The purpose of this is that the very concept of formation 

flying requires control of the formation.  The formation is composed of follower (also 

known as slave) satellite(s) moving about a leader (also known as master) satellite.  If all 

satellites in the formation were controlled independently as leaders, then it would not be 

classified as formation flying. Such a flight management structure becomes convenient 

for satellites that must remain in formation. Figure 2.6 illustrates the leader-centered 

relative frame in relation to the L2-centered frame in which the equations of motion Eq. 

(2.8) are derived, and R is the Cartesian position vector. 
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Figure 2.6: L2-centered and Relative Frames 

 

Eq. (2.20) is the usual equation of motion along the y direction as given in Eq. (2.8b) but 

relating to the follower spacecraft: 

 
(2.20)

From Figure 2.6, the following is true by definition 

 (2.21)
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Then Eq. (2.20) becomes 

ሷܻி ൌ െ2൫ ሶܺ௅ ൅ ሶܺ௥൯ ൅ ௅ܻ ൅ ௥ܻ െ
ሺ1 െ ሻሺߤ ௅ܻ ൅ ௥ܻሻ

ଵிݎ
ଷ െ

ሺߤ ௅ܻ ൅ ௥ܻሻ

ଶிݎ
ଷ     (2.22)

Rearranging, 

ሷܻ௥ ൌ ቈቆെ2 ሶܺ௅ ൅ ௅ܻ െ
ሺ1 െ ሻߤ ௅ܻ

ଵிݎ
ଷ െ

ߤ ௅ܻ

ଶிݎ
ଷ ቇ െ ሷܻ௅቉

൅ ቈെ2 ሶܺ௥ ൅ ௥ܻ െ
ሺ1 െ ሻߤ ௥ܻ

ଵிݎ
ଷ െ

ߤ ௥ܻ

ଶிݎ
ଷ ቉ 

(2.23)

Notice that the last term in the first square brackets is equal to terms collected in the 

round brackets; therefore, that whole part of Eq. (2.23) vanishes. Finally, the remaining 

portion of the equation again happens to be in exactly the same form as Eq. (2.8b), but in 

terms of the relative frame.  Linearization follows; first, giving the definition of 

linearization in Eq. (2.24) where ߟ is the general state: 

ሷ௥ݕ ൌ
߲ ሷܻி
ߟ߲

ቤ
ఎ೐

(2.24) ߟߜ

ሷ௥ݕ ൌ െ2ݔሶ௥ ൅ ௥ݕ ൅ ቆെ
ሺ1 െ ௥ݕሻߤ

ଵிݎ
ଷ ൅

3ሺ1 െ ௥ݕሻߤ

ଵிݎ
ସ

ଵிݎ߲

ߟ߲
ቇߟ

ఎ೐

൅ ቆെ
௥ݕߤ

ଶிݎ
ଷ ൅

௥ݕߤ3

ଶிݎ
ସ

ଶிݎ߲

ߟ߲
ቇߟ

ఎ೐

 

ൌ െ2ݔሶ௥ ൅ ௥ݕ െ
ሺ1 െ ௥ݕሻߤ

ଵிݎ
ଷ െ

௥ݕߤ

ଶிݎ
ଷ      

ൌ െ2ݔሶ௥ ൅ ቈ1 െ ቆ
1 െ ߤ

ଵிݎ
ଷ െ

ߤ
ଶிݎ

ଷ ቇ቉  ሶ௥ݕ

ൌ െ2ݔሶ௥ ൅ ሺ1 െ ܿሻݕሶ௥  

(2.25)
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The terms in the inner bracket in the second last line of Eq. (2.25) are approximately 

constant and are a function of spatial position relative to the primaries and has negligible 

contribution with changes in rF that are small compared to the separation distance of the 

primaries presented in Eq. (2.10). Following the same procedure for the equation of 

motion corresponding to the x direction, 

 

ሷܺி ൌ 2 ሶܻி ൅ ܺி െ
ሺ1 െ ሻሺܺிߤ െ ሻߤ

ଵிݎ
ଷ െ

ሺ1ߤ െ ߤ ൅ ܺிሻ

ଶிݎ
ଷ

ൌ 2൫ ሶܻ௅ ൅ ሶܻ௥൯ ൅ ܺ௅ ൅ ܺ௥ െ
ሺ1 െ ሻሺܺ௅ߤ ൅ ܺ௥ െ ሻߤ

ଵிݎ
ଷ െ

ሺ1ߤ െ ߤ ൅ ܺி ൅ ܺ௥ሻ

ଶிݎ
ଷ  

(2.26)

ሷܺ௥ ൌ ቈ2 ሶܻ௅ ൅ ܺ௅ െ
ሺ1 െ ሻܺ௅ߤ

ଵிݎ
ଷ െ

௅ܺߤ

ଶிݎ
ଷ െ ሷܺ௅቉

൅ ቈ2 ሶܻ௥ ൅ ܺ௥ െ
ሺ1 െ ሻሺܺ௥ߤ െ ሻߤ

ଵிݎ
ଷ െ

ሺ1ߤ െ ߤ ൅ ܺ௥ሻ
ଶிݎ

ଷ ቉ 

(2.27)

ሷܺ௥ ൌ ቈሺ1 െ ሻߤ ቆെ
ܺ௅

ଵிݎ
ଷ ൅

ܺ௅ െ ߤ
ଵ௅ݎ

ଷ ቇ ൅ ߤ ቆെ
ܺ௅

ଶிݎ
ଷ ൅

ܺ௅ ൅ 1 െ ߤ
ଶ௅ݎ

ଷ ቇ቉

൅ ቈ2 ሶܻ௥ ൅ ܺ௥ െ
ሺ1 െ ሻሺܺ௥ߤ െ ሻߤ

ଵிݎ
ଷ െ

ሺ1ߤ െ ߤ ൅ ܺ௥ሻ
ଶிݎ

ଷ ቉   
(2.28)

This time the terms corresponding to the leader satellite did not cancel out. This is a 

common feature of relative dynamics. However, the first of the square brackets are not 

dependent on the parameters that are considered to be states (xr,,yr,zr) and their time 

derivatives. Therefore, that whole portion again vanishes, but this time due to the 

differentiation with respect to state in the linearization, making the result Eq. (2.29) 

which corresponds to that given in Eq. (2.21): 

 
ሷ௥ݔ ൌ ሶ௥ݕ2 ൅ ሺ2ܿ ൅ 1ሻݔ (2.29)
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Similarly, for motion along the z dimension: 

ሷܼி ൌ െ
ሺ1 െ ሻܼிߤ

ଵிݎ
ଷ െ

ிܼߤ

ଶிݎ
ଷ  

(2.30)

ሷܼ௥ ൌ െ
ሺ1 െ ሻܼ௥ߤ

ଵிݎ
ଷ െ

௥ܼߤ

ଶிݎ
ଷ  (2.31)

One can very easily obtain the linearized result 

 
ሷ௥ݖ ൌ െܿݖ௥

 
(2.32)

It can be seen that the follower’s state depends on the leader’s state in reality, but the 

linearized dynamics are the same whether it be treated as a leader or follower. This also 

suggests that the follower can have the same reference trajectories about the leader, and 

similarly for the leader about the L2 point.  In simulations that involve linear (model-

based) controllers, the linearized equations of motion Eq. (2.25), Eq. (2.29) and Eq. 

(2.32) shall be used, and the calculated control force ultimately applied on the nonlinear 

equations of motion Eq. (2.23), Eq. (2.28) and Eq. (2.31). 

 

2.7 Nonlinear Reference Trajectory 

 

In section 2.4, it was proposed that a reference trajectory could be derived using the 

approach of solving for the characteristic equation from the state dynamics matrix 

presented in Eq. (2.11), from which one can construct the general solution of the 

differential equation, substitute in the oscillatory frequencies from the marginally stable 

roots (poles) of the characteristic equation, and finally select initial conditions that cancel 

out terms dependent on the unstable poles.  Note however that Eq. (2.11) does not 

represent the actual dynamics of the three-body system.  It is a linearization, hence an 

approximation which is valid only in the vicinity of the L2 point.   Since the accuracy 

reduces with distance away from the L2 point, the spacecraft would behave differently in 
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reality.  Therefore, a zero-force reference trajectory about the point is not necessarily 

accurate when taking this approach.   

 

The nonlinear equations of motion given by Eq. (2.8) are a relatively true representation 

of the dynamics of the three-body system, neglecting only gravitational anomalies close 

to the primaries, the influence of celestial bodies farther out on space, low-mass celestial 

bodies within the three-body region, micrometeorite collisions, sources of radiation 

pressure and other unmodelled dynamics.  An analytical solution does not exist.  The 

only way then to determine the solution is by using a numerical method.  Several 

methods exist, amongst which the most popular ones include the Poincaré-Lindstedt 

method and the Pernicka-Howell method.  The Pernicka-Howell method is used in the 

present study to determine the reference trajectory of the leader spacecraft.  This is done 

because the relative equations of the follower depend on the leader in the nonlinear 

system, and are thus necessary.  The reader is referred to [20] for a detailed derivation of 

the nonlinear reference trajectory at the L2 point using the Pernicka-Howell method.   

 

2.8 Summary 

 

The equations of motion of the circular restricted 3-body system were derived from the 

general N-body problem.  They were then nondimensionalized. The closed form 

solutions of the equations of motion were presented with the linearization to state-space 

form as required for compatibility with model-based controllers.  Several reference 

trajectories and their initial conditions were derived from the linearized model, including 

for when the influence of SRP is modeled into the dynamics; these included the 

Lissajous, Halo and Lyapunov trajectories.  Finally the SFF problem was addressed with 

the derivation of the relative equations of the follower spacecraft with respect to the 

leader spacecraft.  These equations were again linearized and it was found that the form 

of state space model, thus the reference trajectory, is unchanged in the relative frame 

(about the leader satellite).  A brief discussion on nonlinear reference trajectory was also 

presented. 
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CHAPTER 3  

Formation Control using Thrusters 
 

 

 

3.1 Introduction 

 

An overview of the three control methods under investigation for this study is included in 

this section.  The first method is called the “Linear Quadratic Regulator” (LQR) [1].  A 

second linear control method that is prevalent in the process industry, known as “Model 

Predictive Control” (MPC) [27], is then presented.  This has recently become a topic of 

research in the space systems field, but so far only examined in the literature for satellites 

orbiting the Earth.  Finally, “Adaptive Control’, which is a nonlinear control method, is 

evaluated.  This section mainly serves as a comparison of controller performance under 

both ideal conditions and non-ideal conditions with simulated sensor external 

disturbances.   

 

When evaluating controller performance, a basis of comparison must be established.  The 

approach used in this study is to initially tune the controllers such that they all yield the 

same nominal performance in terms of settling time and overshoot, given a specific 

operating environment.  The tuning requirements in numerical simulation, HIL 

simulation and in deployment are expected to change due to unmodeled dynamics.  Even 

sampling time (for digital controllers like MPC) and solver step size can affect results if 

not appropriately chosen.  The approach selected in this study is to nominally choose 

tuning gains that yields the best performance when the system is not subjected to any 

external disturbances. 

 

 



30 
 

3.2 Controller Designs 

 

In the literature, when a stated standard deviation in error, σ, is introduced into a system, 

its performance is expected to be satisfactory within 3σ, normally distributed [34].  This 

standard shall also be followed in this analysis.  By the definition of white noise, this 

deviation is to be applied as a plus or minus perturbation on the nominal signal and 

therefore has a mean of zero.  As Figure 3.1 illustrates, the probability that the noise will 

result in an error that is within some bound Xσ is equal to the area under the normal 

distribution curve with limits ± Xσ, therefore there is a ~100% chance the error falls 

within 3σ and a 68.27% chance the error will be no more than σ.   

 

Figure 3.1: Normally Distributed Probability of Error 

 

It is of interest to know the maximum error the trajectory that a satellite will undergo 

when the sensor outputs are subjected to a variation of noise levels.  The affected sensors 

will be that for measuring position and velocity, as those are required in determining the 

required control force for corrective action.  The resultant position error maintained by 

the satellite’s trajectory in the steady state is termed the “error box”.  As a general means 

for establishing robustness, taking into account various types of possible faults a sensor 

or sensing system may experience (such as outlier data, temporary failure, miscalibration, 

external interference, degradation, etc.), a noise is introduced into the system.   

 

In addition to sensor noise, two fault cases will be simulated that cover worst-case 

scenarios.  The first is where the position and velocity sensors have gone offline over 

50% of the course of an orbit.  During this time, the controller sees zero position and 
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velocity error, and state errors are frozen to show the continued motion along the desired 

elliptical trajectory.  Finally, random oscillation is introduced about the nominal value of 

thrust calculated by the control laws, to simulate thruster combustion instability.  The 

amplitude of this oscillation is random but limited to 1 mN, and has a frequency that is 

also random but limited to 3373 cycles per orbit as a conservative degree of disturbance.  

Thrust degradation is important to include in simulations whenever thrust output changes, 

because propellants are used inefficiently during transient operation below full design 

pressure in the combustion chamber, which also entails non-optimal expansion of the 

flow through the nozzle.  This applies to cold gas, warm gas or hot gas thrusters.  In the 

case of pulsed thrust, the specific impulse decreases as the pulse duration becomes short, 

which is the case for on-off control, such as bang-bang sliding mode, as convergence to 

the reference trajectory is approached.  The magnitude of total impulse delivered in a 

short-pulse duty cycle degrades over time as well [46].   

 

3.2.1 Linear Quadratic Regulator  

 

3.2.1.1 Mathematical Background 

 

A cost function, J, is defined as a combination of the state and control vectors whereby 

their relative importance can be factored in by weighting matrices that also serve to resize 

the vectors for matrix summation.  These (diagonal) matrices can be denoted by Q and R, 

where Q affects the state error, and R affects the control effort in the response.  Varying 

the elements of these matrices provides a means of controller tuning for acceptable 

settling time and overshoot.  Such tuning can be applied to all or some states, or control 

inputs individually.  This means that the control gain, K, will be a function of Q, R and 

of course the system dynamics, whose effects can be grouped into the matrix M: 

 

ࡶ ൌ න ሾࢀ࢞ሺ߬ሻ ࢞ ࡽሺ߬ሻ ൅ ࢀ࢛ ࡾ ሺ߬ሻሿ࢛ · ݀߬
௧೑

௧೔

ൌ ሻݐሺࢀ࢞ ࡹ  ሻ (3.1)ݐሺ࢞
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Thus, the cost function is minimized when the matrix M is minimized.  Tewari [5] shows 

how the matrix M is related to the state transition matrix and control gain of the system, 

and is the solution of the following matrix differential equation, which is popularly 

known as the State-Dependent Riccati equation. 

 

െ
ࡹ݀
ݐ݀

ൌ ࡹ ࢀ࡭ ൅ ࡹ ࡭ െ ࡹ ૚ିࡾ࡮ ࡹࢀ࡮ ൅  (3.2) ࡽ

 

Minimization of Eq. (3.2) involves setting the right-hand side to zero, since the above 

form of the Riccati equation is of first order and separable.  The optimal feedback gain is 

then found by substituting the matrix M into a relation by which it was defined: 

ࡷ ൌ  (3.3) ࢔࢏࢓ࡹࢀ࡮૚ିࡾ

 

This approach is called a ‘linear quadratic regulator’ since Eq. (3.3) is in a matrix 

quadratic form.  Since this is a linear gain, the control input in this negative feedback 

system is directly proportional to the state error, ࢋ, via the gain: 

 

࢛ ൌ െࡷ  (3.4) ࢋ

 

Even for a controllable system, there does exist a range of values that the elements of the 

Q and R matrices can have that will lead to unstable closed loop system eigenvalues.  

These can serve to provide bounds for tuning.  The B matrix for the configuration of 

thrusters considered in this chapter implies an instantaneous application of the specific 

force from Eq.(3.4).  The full equations of motion that represent the system are then 

given by 

 

൝
ሷܺ
ሷܻ
ሷܼ
ൡ ൌ ቐ

ሷܺ௥
ሷܻ௥
ሷܼ௥

ቑ ൅ ሾࡵ૜ൈ૜ሿ(3.5) ࢛ 
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Following the choice of the weighting matrices to be Q=102×I6×6 and R=10-2×I33×3, 

respectively, the optimal gain given by the LQR controller is K=102×I3×3.  This gain results 

in the placement of the eigenvalues on the complex plane as listed in Table 3.1. 

 

 Closed-Loop Eigenvalue 

λ1, λ2 -99.0167 ± 2.0195i 

λ3 -0.9388 

λ4 -1.0278 

λ5 -1.0428 

λ6 -98.9572 

Table 3.1: Closed Loop Eigenvalues using LQR Controller 

 

All eigenvalues in Table 3.1 are on the left-hand side of the complex plane; therefore the 

system is stable.  Eigenvalues λ1 and λ2 clearly correspond to the x and y states, since 

they are the only eigenvalues with an imaginary component implying oscillation.  

Eigenvalue λ3 corresponds to the z state, while λ4, λ5 and λ6 correspond to the xሶ , yሶ  and zሶ  

states, respectively.  States with negative poles that are large in magnitude converge 

faster after a perturbation. 

 

3.2.1.2 Simulation Results 

 

A performance evaluation for the LQR controller subjected to varying degrees of sensor 

noise is presented in Figure 3.2.   It shows the variation of resultant error box size of the 

satellite in the steady state as a function of the error the sensing system can provide for 

position; this is the lower dashed line in the figure.  For several position sensor errors, 

various velocity sensor errors were also factored in up to 200 km/hr; that corresponds to 

the upper dashed line in the figure.  The solid vertical lines throughout are the running 

lines marking where the simulations actually took place. 

 



34 
 

The effect of velocity sensor errors increases with position sensor errors until it 

overcomes in dominance beyond 6 km in position error, where the error box size more 

than doubles for a 200 km/hr velocity sensor error. The control force remains on the order 

of 1 N/kg.  This may not be desirable for a miniature satellite where the desirable order of 

magnitude is 1 mN/kg.  The performance of other controllers remains to be presented in 

comparison.  Assuming a navigation system based on inertial measurement, as has 

historically been done for Apollo and other far range missions, the velocity information is 

expected to be more accurate than the position information, as the value of the latter is 

derived from integration of the former.  This is because the process of integration 

amplifies error.  Similar applied error values have also been used in [16]. 

 

One exercise in testing the performance of the controller is to evaluate system recovery 

after it has been subjected to disturbances.  The concept of sensor and propulsion system 

actuator fault cases follows the examples set out in the literature that involve similar 

investigates [34,46].  However, faults (other than noise due to degradation) can also occur 

in sensors and become catastrophic to the system if not accounted for in the control 

system design.  The first cases being examined are where the sensors for both position 

and velocity are disabled and assumed null values while 50% of the orbit elapses, 

returning to correct operation thereafter.  This disturbance will be applied only along the 

x and y dimensions.  The z dimension will remain unaffected.  A successful controller 

would give such a response where: 
 

(a) The error does not grow too large. 

(b) The required control input does not grow too large. 

(c) The trajectory does not diverge from the reference. 

 

The first of these conditions can be evaluated by considering Figure 3.3, where it can be 

seen that the maximum error is about 3.2 meters and occurs in the x direction.  Of course, 

there is no real threshold for what satisfies being not “too large”.  Therefore, the 

responses are to be compared with those generated by other controllers. 
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Figure 3.3: State Errors using LQR Controller subjected to Sensor Inoperative Condition 
 

 

As expected, there is no disturbance seen in the z direction due to uncoupled dynamics 

made obvious from the systems equations of motion and the inherent stability of the z 

motion.  The amplitude of oscillation in the z direction is exactly equal to the initial error 

applied, which has been enforced to zero following the perfect initial conditions.  The 

variation of control input that was used in the trajectory recovery for this controller is 

shown in Fig. 3.4.  The magnitude of the maximum required control acceleration is 0.3 

N/kg.  The reference trajectory is recovered within 2 orbits, with some negligible steady 

state error remaining in velocity along the y dimension. 

 

The final comprehensive fault case considered is that of unsteady thrust due to 

instabilities in the respective thruster’s combustion.  As explained in the introduction to 

this chapter, a random frequency oscillation of ±1mN is applied.  Again, the stable 

dynamics along the out-of-plane z dimension is uncoupled, but shown anyway.  The error 

response is shown in Figure 3.5.  The high frequency oscillation is due to the added 

disturbance. 
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Figure 3.4: Control Input using LQR Controller subjected to Sensor Inoperative 
Condition 

 

 

 

Figure 3.5: State Errors using LQR Controller with Unsteady Thrust 
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In this case, the steady state error is bounded within 5 km for position and within 0.75 

km/hr for velocity.  The variation of the control input is shown in Figure 3.6, and shows it 

to be bounded within 7.5 N/kg. 

 

 

Figure 3.6: Control Input using LQR Controller with Unsteady Thrust 

 

3.2.2 Model Predictive Control  

 

3.2.2.1 Mathematical Background 

 

Before the mathematics of this control method is introduced, it is necessary to explain 

some basic terminology used for this controller.  Immediately apparent is that the variable 

representing control inputs is referred to as “manipulated variables”.  In this report, the 

states are selected such that they are physically meaningful and directly relevant so that 

the “output” of the plant would synonymously refer to the states which are to follow the 

setpoints (reference trajectory) as input to the controller.  The distinctiveness of this 

control method is that its optimization involves the calculation of M planned control 

moves, with the current sampling instant being k and the last control move planned to 

occur when the sampling instant will be k + M; thus, M is the “control horizon”.  
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Simultaneously, the optimization also takes into account the predicted trajectory of P 

sampling instants into the future, until the sampling instant becomes k + P; thus, P is the 

“prediction horizon”.  A “sampling instant” corresponds to a “time step” in the 

calculation/simulation.  Parameter “r” is the variable representing the setpoint, which can 

be time-varying, as in the case of the trajectory that is considered in this study. 

 

As already implied by using sampling instant rather than time, the first step is to convert 

the system model to digital state space form.  Let Sy be the weighted sum of setpoint 

deviation within the prediction horizon that serves to increase control effort to force 

convergence: 

 

ܵ௬ሺ݇ሻ ൌ ෍ ෍ቚݓ௝
௬ൣݎ௝ሺ݇ ൅ ݅ሻ െ ௝ሺ݇ݕ ൅ ݅ሻ൧ቚ

ଶ
௡೤

௝ୀଵ

௉

௜ୀଵ

 (3.6) 

 

Let SΔu be the weighted sum of the control variations within the control horizon that 

serves to track and ultimately suppress large values of Δu that could otherwise lead to 

degradation of setpoint tracking (towards instability) and larger than necessary control 

effort (towards larger overshoot, settling time and high sensitivity to disturbances): 

 

ܵ∆௨ሺ݇ሻ ൌ ෍ ෍หݓ௝
∆௨∆ݑ௝ሺ݇ ൅ ݅ െ 1ሻห

ଶ
௡೘ೡ

௝ୀଵ

ெ

௜ୀଵ

 (3.7) 

 

For cases that require a setpoint on the control input (manipulated variable), Su must also 

be defined, which is the weighted sum within the control horizon that subjects importance 

upon the control to converge to reference values of manipulated variables:  

 

ܵ௨ሺ݇ሻ ൌ ෍ ෍หݓ௝
௨ൣݑത௝ െ ௝ሺ݇ݑ ൅ ݅ െ 1ሻ൧ห

ଶ
௡೘ೡ

௝ୀଵ

ெ

௜ୀଵ

 (3.8) 
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This is necessary for most systems.  For example, other than by using hard constraints, 

such setpoints on manipulated variables can be used to keep a system within safe 

operating limits or at a zero or minimum-power level in the case where there are more 

manipulated variables than output setpoints to prevent random fluctuations of control 

force within the operating space.  Such cases correspond to over-actuated systems for 

which multiple solutions for counter-acting disturbances would exist.  Also, some cases 

require a continuous control force, such as when a satellite is to be held at an orbit 

displaced above or below the orbital plane of the primaries in a three-body system using 

solar radiation pressure; the solar sail would have to be held at a non-zero nominal 

control angle. 

 

Regarding the limit of summation in the above equations, the scalar “n” refers to the 

number of elements of the vector presented on its subscript.  As for the equations 

themselves, “w” is the (positive) weight corresponding to the importance of the deviation 

of the variable presented in its superscript.  For example, the controller is more robust 

when wn
Δu is larger and converges to the setpoint faster when wj

y is larger.  An efficient 

way to decide on such trade-offs is to set one of the weights to 0 ≤ α ≤ 1 and the other to 

1 - α. wj
u is treated as wj

y (it penalizes the error in the control input rather than the 

setpoint) but does not have the same sort of tradeoff.  A small weight means that the 

variation of the corresponding variable is not significant to the system’s overall 

performance, and vice-versa.  With the three cost functions defined in Eq. (3.6) to (3.8), 

the optimization becomes 
 

min
∆௨ሺ௞|௞ሻ,…,∆௨ሺ௠ିଵା௞|௞ሻ,ఌ

ൣܵ௬ሺ݇ሻ ൅ ܵ∆௨ሺ݇ሻ ൅ ܵ௨ሺ݇ሻ ൅  ଶ൧ (3.9)ߝఌߩ

 

Eq. (3.8) is subjected to the following constraints: 

 

௝௠௜௡ݕ
ሺ݅ሻ െ ߝ ௝ܸ

௬

௠௜௡
ሺ݅ሻ ൑ ௝ሺ݇ݕ ൅ ݅|݇ሻ ൑ ௝௠௔௫ݕ

ሺ݅ሻ ൅ ߝ ௝ܸ
௬

௠௔௫
ሺ݅ሻ (3.10)

௝௠௜௡ݑ∆
ሺ݅ሻ െ ߝ ௝ܸ

∆௨
௠௜௡

ሺ݅ሻ ൑ ௝ሺ݇ݑ∆ ൅ ݅|݇ሻ ൑ ௝௠௔௫ݑ∆
ሺ݅ሻ ൅ ߝ ௝ܸ

∆௨
௠௔௫

ሺ݅ሻ (3.11) 

௝௠௜௡ݑ
ሺ݅ሻ െ ߝ ௝ܸ

௨
௠௜௡

ሺ݅ሻ ൑ ௝ሺ݇ݑ ൅ ݅|݇ሻ ൑ ௝௠௔௫ݑ
ሺ݅ሻ ൅ ߝ ௝ܸ

௨
௠௔௫

ሺ݅ሻ (3.12) 

ሺ݇ݑ∆ ൅ ݄|݇ሻ ൌ 0 , ݄ ൌ ݉, … , ݌ െ 1 (3.13) 

ߝ ൒ 0 (3.14) 
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The first three conditions, Eq. (3.10) to (3.12), require the respective output and control 

input to remain within their bounds in the operating space.  Vmin/max are (positive) weights 

on the importance of the constraint, such that a larger value softens the constraint and a 

value of zero corresponds to a hard constraint that is strictly not to be violated.  All 

weights have a maximum value of one.  Finally, ε is a “slack variable” necessary for 

programming purposes to turn inequalities into equations of the same number as 

variables. 

 

It is evident from the formulation of this control method that if desired, it is very easy to 

install constraints on control effort, as well as on state variables/plant outputs.  Adjusting 

settling time remains an exercise of tuning gains via the much simplified tuning of 

weights.  Also, just as with the LQR control method which also applies to linearized 

systems, stability is guaranteed by executing the optimization of the cost function after 

checking the controllability matrix, and returning only stable closed loop system 

eigenvalues. 

 

Control input is determined from Eq. (3.4) the same way as it is for the LQR controller.  

Choosing null output weights and output weight [1,1,1,0,0,0], with a control horizon of 1 

as is the only option when using an infinite prediction horizon, the gain matrix becomes  

ࡷ ൌ 10ସ ൥
2.0006 െ0.0133 0
0.0133 1.9998 0

0 0 1.9997

0.0200 0.0001 0
െ0.0001 0.0200 0

0 0 െ0.0200
൩  

with closed loop system eigenvalues given in Table 3.2. 

  

 Closed-Loop Eigenvalue 

λ1, λ2 -100 ± 0.9933i 

λ3, λ4 -100 ± 1.0066i 

λ5, λ5 -100 ± 1.0001i 

Table 3.2: Closed Loop Eigenvalues using MPC Controller 

 



42 
 

All the poles have negative real parts, so the control system is expected to be stable.  The 

relatively large magnitude and oscillatory components on all states suggest fast and 

underdamped convergence.  The system is again represented by the full nonlinear 

equations of motion as given in Eq. (2.8). 

 

3.2.2.2 Simulation Results 

 

As with the previous controller, the following analysis simulates sensor degradation by 

adding the same Gaussian noise distribution in the feedback position and velocity data 

used by the controller.  The magnitude of the stated error is σ and the corresponding noise 

added to the data had zero mean and was within the standard deviation of 3σ.  Fig. 3.7 

shows the relationship between the error box size of the trajectory and maximum control 

input required for stability across the spectrum of sensor errors. 

 

The MPC controller far out-performs the LQR control in terms of the control input 

required in handling sensor errors.  The MPC controller allows the spacecraft to drift 3⅓ 

times farther from the reference trajectory, but has a control input on the order of 10 

mN/kg, 100 times less than the LQR controller.   

 

Typically, as the prediction horizon is increased, one expects a better response.  

However, in the case of formation flying where the reference trajectory is changing at 

every time step, one cannot expect better performance when a larger prediction horizon 

implies the control requirement to be relaxed such that it is to converge to zero at some 

point in the future.  This conclusion is also supported in literature [33]. 

 

The case is examined where the in-plane position and velocity sensors become stuck, or 

disabled, for 50% of an orbit.  The error response is shown in Figure 3.8. 
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Figure 3.8: State Errors using MPC Controller subjected to Sensor Inoperative Condition 
 

 

All states are seen to converge back to the reference trajectory within 2% of an orbit.  The 

recovery phase of the transient response in Figure 3.8 shows a vertical drop, especially 

along the x dimension.  In fact, if one were to zoom in they would find that the recovery 

actually takes place over 0.014 orbits (~⅓ of a km) and has an overshoot of 13.7 m.  This 

is pretty reasonable for the recovery from a tracking error on the order of only 10 km.  

The variation in control input that yielded this response in Figure 3.9 is given next. 

 

Therefore, in terms of maximum control acceleration required, this response is far 

superior to that of the LQR controller.   Here, all controllers were initialized to give the 

same performance.   However, the results are valid for only what was modeled, so an 

adjustment of tuning parameters would be required in different environments, including 

physical deployment, to achieve comparable responses. 

 



45 
 

 

Figure 3.9: Control Input using MPC Controller subjected to Sensor Inoperative 
Condition 

 

 

Figure 3.10 gives the error response for the MPC controller subjected to the same worst-

case thruster instability.  The position errors are less than 10 times smaller and the 

velocity errors are also smaller but with generally the same magnitude as compared with 

the performance resulting with the LQR controller.  The significant difference is that the 

control force required to yield this response is on the order of 0.1 mN/kg as shown in 

Figure 3.11. 

 

Overall, the MPC controller is more sensitive to degraded sensors, especially for velocity, 

but still yields better performance (compared with the LQR controller) in other areas of 

robustness, such as during sensor faults and under thruster instability. 
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Figure 3.10: State Errors using MPC Controller with Unsteady Thrust 
 

 

 

Figure 3.11: Control Input using MPC Controller with Unsteady Thrust 
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3.2.3 Adaptive Control  

 

This analysis would not truly be complete without including at least one nonlinear control 

approach in the system performance comparison.  Of all such nonlinear control methods, 

it appears that the space industry is presently inclined to have greater trust in bang-bang 

control for applications such as station-keeping and attitude control [1].  However, more 

advanced versions of sliding mode control exist, and have been studied for many years.  

The reader will find that the adaptive controller designed and analyzed herein, based on 

Sliding Mode Control theory, has some beneficial characteristics to offer when applied to 

the system under consideration.   

 

3.2.3.1 Algorithm Formulation 

 

Consider a plant with equations of motion in the form below, with q representing the state 

vector and the subscript referring to the dimension being pertained to: 

 

൤
ሷݔ
ሷݕ ൨ ൌ ൤ ௫݂ሺݍሻ ൅ ௫ݑ

௬݂ሺݍሻ ൅ ௬ݑ
൨ (3.15)

 

The general idea behind sliding mode control is to transform the nth order nonlinear 

system dynamics to an equivalent n-1 order problem of keeping the state trajectory on a 

surface in n-1 space.  In this case for a 2nd order system, the problem is to keep the state 

trajectory on a line on the phase plane: 

 

ݔ
ሶݔ

൏ 0 (3.16)

 

One can define the sliding plane as a differential function of the tracking error, e, of the 

state: 
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ࡿ ൌ ሶࢋ ൅ ଵܲ(3.17) ࢋ

 

The sliding mode control law can then be written in the following form: 

 

࢛ ൌ െሺ݇௢ ൅ ݇௧ሻ(3.18) ࡿ

 

Selecting the nominal control gain, ko, to be zero is also valid.  Note that when expanded 

and after the substitution of Eq. (3.4) into Eq. (3.6), λ is effectively equivalent to –ktP1 

and thus satisfies the stability condition of Eq. (3.3), as long as both kt and P1 are 

positive. 

 

An adaptation law for the adaptive control gain, kt, is to be created; it is chosen to be of 

the form 

݇௧ ൌ
׎ߚ

ԡܵԡ ൅ ߜ
 (3.19)

where 

ߜ ൌ
ߟ

1 ൅ ׎
 (3.20)

 

|| || denotes the vector norm and ߚ is the adaptive parameter being used as a weight that 

governs the application of necessary penalization of tracking error with respect to the 

distance of the state on the sliding plane from the stable origin.  Thus, ׎ is appropriately 

chosen as a term representing the magnitude of the total tracking error with the property 

of being greater than or equal to unity as to not vanish the adaptive parameter, while η is 

simply another tuning parameter: 

 

׎ ൌ 1 ൅ ԡ݁ԡ ൅ ԡ ሶ݁ԡ (3.21)

 

It follows that the adaptation law is 
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ሶߚ ൌ ଶܲ ቈ
ԡܵԡଶ׎

ԡܵԡ ൅ ߜ
቉ (3.22)

 

This must be integrated in the simulation, for it to be applied to the control law, being fed 

back to the controller. 

 

Sufficient values for the tuning parameters have been chosen to be P1 = 2, P2 = 100, η = 

0.01 and ko = 2.  P1 largely controls the settling time, ko can be used to roughly set the 

order of magnitude of the control input appropriately, P2 can be used to roughly set the 

sensitivity and magnitude of variation of the adaptive parameter, and η roughly sets the 

allowable threshold sensitivity of deviation after convergence from the origin of the 

phase plane.  Suitable values can be carefully selected based on desired response, but are 

usually found easily and quickly by trial and error. 

 

Eq. (3.19) is actually an approximation of the sgn function, which justifies using the term 

“sliding mode”.  Most nonlinear control law’s share a basic characteristic in that they are 

merely derived from a Lyapunov function that is made to contain all the nonlinear terms 

of the dynamical model.  The adaptation law is then formulated such that the stability 

conditions imposed on the Lyapunov function are ensured to be satisfied upon 

substitution.   

 

The resulting control law, when substituted in the equations of motion, cancels out all 

nonlinearities and incorporates the gain derived by linear control methods.  These gains 

are of course modified by the nonlinear terms already in the control law, but the task has 

been greatly simplified.  In the case presented herein, the gain itself was made to be the 

parameter, eliminating even the need for using linear controllers.  This approached was 

derived using the controller design philosophy presented in [21]. 
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3.2.3.2 Stability Analysis 

 

The stability of this approach has will be demonstrated by ensuring the tuning parameters 

are selected to conform to the conditions that guarantee the validity of Eq. (3.23).  Proof 

of the stability of the nonlinear control system while being subjected to the adaptation 

law given in Eq. (3.22) can best be demonstrated using the Lyapunov Stability Theorem. 

 

Let ߚመ  be the approximated value of ߚ as output by the adaptive controller.  The candidate 

Lyapunov function below had been found to fulfill these criteria: 

 

ܸ ൌ  
1
2

்ܵܵ ൅
1

2 ଶܲ
൫ߚ െ መ൯ߚ

ଶ
 (3.23)

 

Eq. (3.23) is positive definite as long as P2 > 0, thus the first condition of the stability 

requirement is satisfied.  Now, note that the sliding plane, S, is a function of tracking 

error of the state which is zero when the system is in equilibrium, the case in which the 

adaptive parameter would also converge to zero, making Eq. (3.17) equal to zero when 

the error is zero.  Since the controllers are designed based on the error dynamics equation 

of motion, the effective state is actually its own differential, and the second stability 

condition is satisfied.  Finally, proving the third stability condition exists will also serve 

to validate Eq. (3.22) as an appropriate adaptation law.  One can begin by differentiating 

Eq. (3.23) with respect to time: 

 

ሶܸ ൌ ்ܵ ሶܵ െ
1

ଶܲ
൫ߚ െ መሶߚመ൯ߚ  (3.24)

 

Expanding and differentiating Eq. (3.17) with respect to time, the result is 

 

ሶܵ ൌ ݑ ൅ ሾ݂ሺݍሻ െ ሷௗݔ ൅ ଵܲ ሶ݁ሿ (3.25)
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Let  ܿ ൌ ݂ሺݍሻ െ ሷௗݔ ൅ ଵܲ ሶ݁ ;  substitution of Eq. (3.22) and (3.25) into  Eq. (3.24) yields 

  

ሶܸ ൌ  ்ܵሺݑ ൅ ܿሻ െ ൫ߚ െ መ൯ߚ ቆ
ԡܵԡଶ׎

ԡܵԡ ൅ ߜ
ቇ 

(3.26)

 

Substituting c into Eq. (3.26), noting that ԡܿԡ ൑ ׎ߚ ሺԡܵԡ ൅ ⁄ሻߜ   and expanding, further 

simplification yields 

  

ሶܸ ൑  െ݇௢ԡܵԡଶ െ ൫ߚ െ መ൯ߚ ቆ
ԡܵԡଶ׎

ԡܵԡ ൅ ߜ
ቇ 

(3.27)

 

Thus, the inequality of Eq. (3.28) is a true statement 

  

ሶܸ ൑ െ݇௢ԡܵԡଶ (3.28)

 

Integration of Eq. (3.28) from ݐ ൌ 0 to ݐ ൌ ∞ yields 

 

 න ԡܵሺݐሻԡଶ݀ݐ ൑
ܸሺ0ሻ െ ܸሺ∞ሻ

݇௢

ஶ

଴
 (3.23)

 

V(t) is a non-increasing function of time and is low-bounded.  Therefore ܸሺ0ሻ െ ܸሺ∞ሻ ൏

0 and ܵ א ܵ ଶ.  The boundedness of S implied thatܮ א ஶ. ሶܵܮ א  ஶ is also true since ݁ andܮ

ሶ݁ are also bounded.  The relation lim௧՜ஶ ܵሺݐሻ ൌ 0 indicates that ݁ and ሶ݁ converge to zero 

asymptotically according to Barbalat’s lemma.  It is also easy to see that Eq. (3.26) is 

negative definite as long at 0 < ׎, ݇௢>0 and P2 > 0.  Thus, this adaptive controller and its 

associated adaptation law Eq. (3.22) has been proven to be stable.  The system is again 

represented by the full nonlinear equations of motion as given in Eq. (2.8). 
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3.2.3.3 Simulation Results 

 

The same sort of analysis is done at this stage as done earlier, wherein sensor degradation 

is simulated by means of adding the same Gaussian noise distribution in the feedback 

position and velocity data used by the controller.  Again, if the error has a specific 

magnitude, σ, then the corresponding noise added to the data has a zero mean, and is 

within the standard deviation of 3σ.   

 

Upon simulation, right away it is noticed that the growth of the error box size with sensor 

errors is similar to that of the LQR controller.  The difference in performance is that the 

adaptive controller is less sensitive to velocity sensor noise.  The right-handed scale in 

Figure 3.12 presenting the required control force shows that the order of magnitude is of 

1 mN/kg, 1000 times less than that of the LQR controller and 10 times less than the MPC 

controller.  Therefore, this is ultimately the best type of controller to use if sensor noise is 

expected.   

 

For improved understanding of the controller behavior and for better comparison, the 

other disturbance cases are now examined.  Firstly, the sensor is disabled over 50% of the 

orbit.  The error response is shown in Figure 3.13.  All states converged back to the 

reference trajectory within 1 orbit after the maximum tracking error approaching 10 km.  

Motion in the z dimension is not affected, since the motion along the x dimension is not 

coupled with it as it is with motion along the y dimension.  This is to be expected as 

evident through the equations of motion, Eq. (2.8).  In terms of fuel cost, the more 

important performance indicator would have to be the control input response (as well as 

the settling time, but that is not an issue here, as all controllers perform similarly in that 

regard), presented in Figure 3.14. 

 

 

 

 



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 3
.1

2:
 E

ff
ec

t o
f 

S
en

so
r 

D
eg

ra
da

ti
on

 o
n 

S
ys

te
m

 P
er

fo
rm

an
ce

 u
si

ng
 A

da
pt

iv
e 

C
on

tr
ol

le
r 



54 
 

 

Figure 3.13: State Errors using Adaptive Controller subjected to Sensor Inoperative 
Condition 

 
 

The large errors establish that the adaptive controller happens to apply much more 

aggressive corrective action than the other controllers.  However, the impulsively applied 

control force, which is on the order of 10 mN/kg, compensates for that, although it is 10 

times larger than that of the MPC controller.  Ultimately, the acceptability of this sort of 

response lies solely with mission objectives or expectancy of such a sensor faults 

occurring. 

 

Figure 3.15 shows the error response for the final type of fault being considered in this 

study, that of thruster instability.  The velocity error is bounded within 0.25 km/hr, which 

is a much tighter band than that of the MPC controller.  The position error has a 

comparable bound to the MPC controller as well.  The corresponding control variation in 

Figure 3.16 also displays a comparable distribution of applied control force with respect 

to the MPC controller.   
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Figure 3.14: Control Input using Adaptive Controller subjected to Sensor Inoperative 
Condition 

 

 

 

Figure 3.15: State Errors using Adaptive Controller with Unsteady Thrust 
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Figure 3.16: Control Input using Adaptive Controller with Unsteady Thrust 

 

It is hard to select the best performing controller between the adaptive and MPC 

approaches.  Industry tends to trust model-based control more, and the robustness and 

flexibility of adaptive control cannot be matched, even if the controllers are re-tuned to 

produce a more favorable outcome for a specific case.  None the less, it has been 

established that the two emerging controllers, MPC and adaptive, are definitely more 

robust than the traditional LQR controller. 

 

3.3 Hardware-in-the-Loop Simulation 

 

In this section, the control methods are validated in a laboratory environment for space 

flight.  LQR, being a common control method in use is very well understood; MPC has 

been simulated, or used in Earth-orbit [16], and is mature in the process industry for 

robotic applications, with the expectation here that it would be an effective means for 

translational control in a simplified space environment; and a type of adaptive controller, 

all arrear in this study.  An adaptive controller of the same family has so far only been 

tested in the laboratory on a satellite reaction wheel and never for translational control.   
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3.3.1 General Description 

 
The HIL simulation was taken place at the Ryerson University’s Space Systems 

Dynamics & Controls (SSDC) Group facility called the Satellite Avionics 

Instrumentation Laboratory (SAIL) on a specially designed testbed referred to as the 

Space System Testing Platform.  The system was a part of the Satellite Airbed Formation 

Experiment (SAFE) which is a proprietary robot that is suspended off the glass airbed 

using air pressure, and utilizes fans as thrusters.  The levitation minimizes friction to 

simulate the free-drift of the space environment, but restricted to 2 dimensions and 3 

degrees of freedom.  This serves as an analogy to the in-plane dynamics in a space 

system application, relating to say station-keeping a leader spacecraft at a Lagrangian 

point.  For the purposes of this study, the goal was to travel from the edge of the airbed to 

its center within a 10 cm-by-10 cm box.  A photograph of this system is presented in 

Figure 3.17 for better understanding. 

 

 

Figure 3.17: Satellite Airbed Formation Experiment 

 

+Y 

+X 
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This system makes use of a vision system to track its location on the airbed.  Three LEDs 

are situated on the top of the unit, identifying the axis of the body frame so that its 

orientation can also be determined.  The camera is mounted on the ceiling of the 

laboratory overlooking the airbed.  A 10 Hz radio is used for communication between the 

SAFE unit and the computer where the controller is running in a Simulink model.  The 

SAFE system was developed over many years, and is currently used as a testing platform 

for new controllers and algorithms.  Since two of the control methods are model-based, 

the equations of motion presented in state-space form are 

 

 

(3.24)

 

Parameter m is the mass of the SAFE unit.  Parameter ߠሶ  is the angular velocity induced 

by the thrusters in the case of thruster misalignment relative to the center of mass, and is 

assumed to be zero; otherwise it is a function of thrust, where the thruster location is with 

respect to the center of mass. Control forces in this system can only be on or off, 

therefore the continuous control variation output by the controller will be used with a 0.1 

threshold as it is applied.  Simulations and test data are now presented for each of the 

controllers. 

 

3.3.2 SAFE System Using LQR Controller 

 

For what was thought to be the behavior of the SAFE system in simulation, Figures 3.18 

and 3.19 show the error and control response, respectively.  For the actual test data of the 

SAFE system, Figures 3.20 and 3.21 show the error and control response, respectively.  
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Figure 3.18: Error Response of Numerical Simulation of SAFE using LQR Controller 

 

 

Figure 3.19: Control Input Response of Numerical Simulation of SAFE using  

LQR Controller 
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Figure 3.20: Error Response of HIL Simulation of SAFE using LQR Controller 

 

 

Figure 3.21: Control Input Response of HIL Simulation of SAFE using  

LQR Controller 
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Obviously, the performance in reality is quite different.  However, simulation is still the 

first step and provides important information as not only an approximation of realistic 

behavior, but also the controllability of the system itself.  Controllability in the textbook 

sense is based only on the state-space matrices, and does not account for the stability of 

the system under disturbances.  

 

3.3.3 SAFE System Using MPC Controller 

 
Figures 3.22 and 3.23 give the error and control response in simulation, this time for 

when MPC control is used.   

 

The MPC controller tended to regulate the velocity more vigorously which resulted in a 

slow and more direct convergence.  It took just under half the settling time for 

convergence as compared to the LQR controller because the LQR controller spent a lot of 

time in overshoot condition.  However, the vigorousness of the MPC controller caused it 

to be inefficient in terms of actuation usage. 

 

 
Figure 3.22: Error Response of Numerical Simulation of SAFE using MPC Controller 
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Figure 3.23: Control Input Response of Numerical Simulation of SAFE using  

MPC Controller 

 

Now, Figures 3.24 and 3.25 give the true response from test data.   

 

Figure 3.24: Error Response of HIL Simulation of SAFE using MPC Controller 
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Figure 3.25: Control Input Response of HIL Simulation of SAFE using  

MPC Controller 

 

3.3.4 SAFE System Using Adaptive Controller 

 

Figure 3.26: Error Response of Numerical Simulation of SAFE using  

Adaptive Controller 
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Figures 3.26 and 3.27 give the error and control response in simulation, this time for 

when adaptive control is used. 

 

Using this controller, settling time was in the vicinity of half of a minute.  Only one 

overshoot exists in the response unlike with LQR control where the system was much 

more underdamped.  The simulation results showed almost identical response in the 

trajectory but differed significantly in the control response.  Ultimately, test results were 

different as compared to simulation results largely due to the much increased damping in 

the test case; however, the LQR controller gave a slightly higher settling time in test than 

in experiment. 

 

 

Figure 3.27: Control Input Response of Numerical Simulation of SAFE using  

Adaptive Controller 

 

Figures 3.28 and 3.29 give the true response from test data.   
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Figure 3.28: Error Response of HIL Simulation of SAFE using Adaptive Controller 

 

 

Figure 3.29: Control Input Response of HIL Simulation of SAFE using  

Adaptive Controller 
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3.4 Summary 

 
In the case of thruster instability, the adaptive controller performs only slightly better 

than the MPC controller.  Overall, the LQR controller generally performs the worst in 

terms of both control input and errors.  The adaptive controller tends to allow for higher 

error tolerance but still yields similar control requirements than the MPC controller, 

being slightly better for some faults and slightly worse for others.  Adaptive control was 

the most efficient controller demonstrated in terms of both propulsion system actuator 

usage and convergence in the HIL simulations, where the performance indicator was 

primarily taken to be settling time.   
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CHAPTER 4  

Performance Analysis with State 
Estimation 
 

 

 

 

4.1 Introduction 

 

As was done in the previous chapter, the performance of various controllers will be 

compared while subjected to simulated sensor noise and sensor/actuator faults.  The 

difference between the two chapters is that state estimation is to be used here.  The 

performance of all controllers in all cases is shown to be significantly improved. 

 

It is expected that for all real systems the sensed value of state or output information 

involves errors.  These errors may originate from modeling uncertainties or external 

disturbances, called process noise, or from the inherent imprecision of observation, called 

measurement noise.  A position or velocity sensor will always have a certain finite degree 

of accuracy, which can degrade over time as the mechanical structure of the sensor 

configuration approaches its design life for the given environment. In the case of a 

sensing system based on inertial navigation, as was the case for the Apollo missions, 

errors will exist which will be amplified in the integration process to derive position and 

velocity information.  Therefore it is important to evaluate not just the performance of the 

controller, as is done in most studies [9-15, 21, 23, 24, 28], but the combination of 

controller and observer.  This evaluation approach can prove to result in very different 

outcomes. 
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4.2 Observer Design 

 

Since it is of greater interest in this study to test the performance of the considered 

control methods rather than observation methods, the same observation method was 

applied to all cases.  This also ensures common and equal modification for all control 

methods, so that the results may remain comparable.    The state estimation was done 

using an approach called “linear quadratic estimation” (LQE).  This is based on the 

Kalman filter, wherein the gain matrix of the Luenberger Observer equation, Eq. (5.1), is 

optimally determined through the minimization of the covariance of the estimation error: 
 

ሶࢄ ௘௦௧௜௠௔௧௘ௗ ൌ ௘௦௧௜௠௔௧௘ௗࢄ࡭ ൅ ࢛࡮ ൅ ࢟ሾࡸ െ ࢄ࡯ ൅  ሿ (5.1)࢛ࡰ
 

Let the dynamics of the system involve process noise (vector v, coupled by matrix F) in 

the equations of motion and uncorrelated measurement noise (vector z) in the output 

equation by superposition, as shown in Eq. (5.2): 
 

ሶࢄ ൌ ࢄ࡭ ൅ ࢛࡮ ൅ ࢜ࡲ

ࢅ ൌ ࢄ࡯ ൅ ࢛ࡰ ൅  ࢠ
(5.2a,b)

 

By a procedure detailed in [5], it can be shown that the correlation matrix of white noise 

is related to the observer gain matrix given in Eq. (5.3): 
 

ࢃ ൌ ࢀࡲࢂࡲ ൅  (5.3) ࢀࡸࢆࡸ
 

V and Z are the spectral density matrices of the process and measurement noise signals, 

respectively.  The optimal Kalman filter gain is calculated by determining the covariance 

matrix of the estimation error that satisfies the matrix Riccati equation, Eq. (5.4): 
 

௢௣௧ࡾ݀

ݔ݀
ൌ ࡾ࡭ ൅ ࢀ࡭௢௣௧ࡾ െ ௢௣௧ࡾ࡯૚ିࢆࢀ࡯௢௣௧ࡾ ൅  (5.4) ࢀࡲࢂࡲ

 

The solution for Ropt is found numerically.  Finally, paralleling the procedure of finding 

the optimal LQR controller gain, the LQE gain is determined, Eq. (5.5): 
 

௢௣௧ࡸ ൌ  ଵ (5.5)ିࢆࢀ࡯ࡾ
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Evidently, all the vectors/matrices may be time-varying when necessary.  The spectral 

density matrices may be used as tuning parameters.  To keep the results of all controllers 

comparable, tuning was kept constant with V = 10×I3×3 and Z = 0.1×I6×6.  Thus, the 

observer gain was 

ࡸ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

  0.8688 െ0.0595  0
െ0.0595 0.9495  0

   0 0  0.9312

1.4274 െ0.2430 0
0.0846 0.7039 0

0 0 0.6355
   1.4274 0.0846  0 

   െ0.2430 0.7039 0
  0 0   0.6355

10.8754 െ0.1804 0
െ0.1804 9.8514 0

0 0 ے9.7745
ۑ
ۑ
ۑ
ۑ
ې

 

 

4.3 Simulation Results 

 

The same 3σ convention was used in the application of simulated sensor noise.  When a 

standard deviation of σ is stated, errors within a 3σ normal distribution are actually 

simulated.  This is a standard practice in the aerospace industry [16, 22].  Figures 4.1-4.3 

show the performance of the controllers, respectively, in conjunction with state 

estimation using LQE.   Figure 4.1 shows the effect of sensor degradation on system 

performance using the LQR controller with LQE state estimation. 

 

The LQR controller with LQE, commonly referred to as “Linear Quadratic Gaussian” 

(LQG) shows an improvement of several orders of magnitude in the reduction of the error 

box size as compared with LQR alone.  When the controller is applied alone, it is only 

possible for the error box to be somewhat smaller than the position sensor error applied 

due to the time taken for the controller to attempt correction before a different random 

error is sensed, creating an absorbing affect.  Further, the error box size is proportional to 

the velocity sensor error applied.  In the case with estimation, especially involving a noise 

with zero means as it appropriately exists, the controller acts on an error that is closer to 

the true state value and not just from defective sensing.  The MPC controller with LQE 

shows a phenomenal improvement with an error box size reduced by three orders of 

magnitude as compared with MPC alone.   Figure 4.2 shows the effect of sensor 

degradation on system performance using the MPC controller with LQE state estimation.  

Figure 4.3 then shows the effect of sensor degradation on system performance using the 

adaptive controller with LQE state estimation. 
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The adaptive controller with LQE similarly shows an improvement of three orders of 

magnitude in the error box size as compared with adaptive control alone.   

 

The LQR controller with LQE is superior in terms of maintaining the smallest error box 

size.  Besides being the components of the LQG controller, it has been shown that the 

LQE observer is suitable also for the other control methods as well, giving excellent 

results.  This is due to the separation principle of control theory which states that 

controllers and observers may be designed and tuned independently before operating 

jointly.  The tracking errors allowed by all controllers are so small that the control force 

needed throughout all simulated operating points with sensor errors was still within  

10-7 N/kg, a value that would fall under any control threshold and thus be ignored. No 

tuning gains or parameters were changed.  Therefore, all real systems which are subjected 

to noise require state estimation for optimal robustness.  The application control methods 

alone are not sufficient. 

 

The fault cases are then re-simulated using LQE.  Plots representing error and control 

force variations follow for each controller.  First, the “sensor inoperative” cases are 

presented.  However, due to the very different characteristics of the controller-observer 

combinations, this fault case is somewhat modified.  Instead of giving a position reading 

of zero error over 50% of an orbit, the sensor reading will simply freeze instead over the 

course of one whole orbit, effectively letting the spacecraft drift away freely.  When 

applied to the controller alone, unacceptable results follow in terms of the ratio of 

tracking errors to Earth-Moon separation distance.    The controllers still however 

guarantee a bounded input resulting in a bounded output (BIBO).  All dimensions are 

affected, but as before only the in-plane results are meaningful since the out-of-plane 

dynamics are inherently stable.  For the LQR controller subjected to an offline sensor 

case, Figures 4.4 and 4.5 show the error and control input response, respectively.  Figures 

4.6 and 4.7 show the same for the MPC controller, and Figures 4.8 and 4.9 for the 

adaptive controller’s error and control input response, respectively. 
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Figure 4.4: State Errors using LQR Controller with State Estimation subjected to Sensor 

Inoperative Condition 
 
 

 
Figure 4.5: Control Input using LQR Controller with State Estimation subjected to 

Sensor Inoperative Condition 
 
LQG shows a similar settling time of less than 2½ orbits with a maximum required 

control input of 50 mN/kg.  Even when compared to the less vigorous sensor fault in the 

previous chapter, this combination far out-performs. 
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Figure 4.6: State Errors using MPC Controller with State Estimation subjected to Sensor 

Inoperative Condition 
 
 
 

 
Figure 4.7: Control Input using MPC Controller with State Estimation subjected to 

Sensor Inoperative Condition 
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A similar improvement in control effort was also seen in the MPC controller with LQE. 

 

 
Figure 4.8: State Errors using Adaptive Controller with State Estimation subjected to 

Sensor Inoperative Condition 
 
 

 
Figure 4.9: Control Input using Adaptive Controller with State Estimation subjected to 

Sensor Inoperative Condition 
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An improvement was observed in the Adaptive controller with LQE where approximately 

the same magnitude of control force was required to correct the state error incurred 

during the free drifting of the satellite.  The settling time still remains under two orbits.    

With these results, it can be concluded that the MPC+LQE combination is the best of the 

three, ahead of the Adaptive controller with LQE by not very much at all.  Comparison is 

judged solely on magnitude and duration of control effort and transient recovery in the 

error response.  In terms of best performing controllers, the same conclusion follows 

from the previous chapter without state estimation in the control scheme. 

 

Finally, the unsteady thrust fault case is presented.  This is a test of control system 

robustness in dealing with random disturbances on the actuator segment rather than the 

sensor segment of the system.  For the LQR controller subjected to unsteady thrust, 

Figures 4.10 and 4.11 show the error and control input response, respectively; Figures 

4.12 and 4.13 show the same for the MPC controller and Figures 4.14 and 4.15 for the 

Adaptive controller’s error and control input response, respectively. 

 

 
 

Figure 4.10: State Errors using LQR Controller with State Estimation subjected to 
Unsteady Thrust 
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Figure 4.11: Control Input using LQR Controller with State Estimation subjected to 
Unsteady Thrust 

 
 
For the LQG case, maximum error reduced by three orders of magnitude and control 

acceleration remains within of 10 mN/kg. 

 

 
 

Figure 4.12: Error Variation using MPC & State Estimation with Unsteady Thrust 
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Figure 4.13: Control Input using MPC & State Estimation with Unsteady Thrust 
 

 
For the MPC controller with LQE case, excluding the initial overshoot which seems to be 

a characteristic common to the results of all controllers even though there is no initial 

confirmed by zooming in on the plots on screen, velocity errors are reduced by 40%.  

Errors along the y axis are noticeably reduced as well.  Control acceleration is bounded 

by ±1mN, matching the maximum magnitude of disturbance. 

 

There was no major improvement in the performance if the Adaptive controller with LQE 

system in terms of control input.  The actual control acceleration applied is indeed greater 

than 1mN/kg, but the plots shown are the calculated control inputs by the controller 

which is independent of the fluctuations.  That is why it is possible for control 

acceleration to be less than the applied disturbance.  Position errors show at least a 10 

fold improvement whereas velocity errors do not show any significant improvement.  

Dealing with unsteady thrust, LQG yields the better outcome for this one fault case.  The 

Adaptive controller with LQE was not far behind.  
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Figure 4.14: Error Variation using Adaptive Controller & State Estimation with 
Unsteady Thrust 

 
 

 
 

Figure 4.15: Control Input using Adaptive Controller & State Estimation with  
Unsteady Thrust 
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4.4 Summary 

 

This chapter involved noise in both the state as sensing noise and control input in terms 

of unsteady thrust, each with their own appropriate definitions.  The LQE observer was 

designed to produce a better state estimation whereupon the controller would act rather 

than direct corrupted state measurement.  The same fault cases were simulated as in the 

previous chapter where the spacecraft drifted up to some common tracking error before 

each of the controllers were allowed to realize the error buildup and commence corrective 

action, while being subjected to noise.  The conclusion of best performing controllers did 

not change with adaptive and MPC controllers demonstrating the greatest robustness.  

However, in the case of unsteady thrust where a 1mN oscillation of thrust was applied 

with random frequency, simulating turbulence in combustion, the LQG combination 

outperformed.  These results are valid for the conditions in which the control system was 

simulated. 
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CHAPTER 5  

Formation Control Using 

Thrust Vectoring 
 

 

 

5.1 Introduction 

 
Many satellites, such as Earth observation satellites, utilize a single primary thruster and 

rely on an attitude control system to redirect the line of thrust when needed.  With thrust 

vectoring, the line of thrust can be modified by rotating the thruster nozzle or 

reconfiguration of its geometry.  Currently, many rockets, fighter aircraft and missiles 

make use of this method as it provides the advantage of using a single engine to gain the 

maneuverability usually acquired by multiple engines.  Attitude dynamics also become 

coupled with translational dynamics when the line of thrust does not pass through the 

center of mass of the vehicle.  In this chapter, it is assumed that the line of thrust is 

always coincident with the satellite center of mass (or that attitude control is taken care of 

separately) and that the control angles are given relative to the L2-centered coordinate 

frame.  Figure 5.1 illustrates the concept of thrust vectoring for better understanding. 

 

 

Figure 5.1: Illustration of Vectored Thrust 
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5.2 System Model and Controller Design 

 

Using the convention shown in Figure 5.2, the effective line of thrust or direction the 

nozzle is pointing is defined by the angles  and .   Angle  is the in-plane angle 

between the x axis and the projected thrust vector on the x,y plane, while  is the out-of-

plane angle between that projected thrust vector to the real three dimensional thrust 

vector.   

 

 

Figure 5.2: Angle Convention Used for Thrust Vectoring 

 

 

The Bu matrix on the right hand side of Eq. (2.11) then becomes Eq. (5.1). 

 

 
(5.1) 

This form is correct, but the limitation of non-affine control inputs.  The thrust, T, is 

affine as it can be separated into the control input vector, u.  However, the two angles are 

arguments of trigonometric functions and thus cannot be separated. This approach is an 
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alternative to linearization which will be used in the next chapter.  Fortunately, the same 

type of problem was tackled in [20] while attempting to make equations of a satellite in 

the Sun-Earth system using solar radiation pressure to become affine.  The procedure 

involves the controller utilizing a dynamics model representation based on the third time-

derivative of the system.  Then, the rate of change of the thrust magnitude and of the two 

control angles then become the new effective control inputs for the controller.  Referring 

to Eq. (5.2), the control inputs are then integrated and fed back to the nonlinear system, 

Eq. (5.3), for simulation of the motion. 
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Eq. (5.2) is used for designing controllers that are based on linear system models.  The 

nonlinear plant is them represented as  
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The “State Dependent Riccati Equation” (SDRE) method is a time-varying system model 

being used as a candidate controller.  In the derivation of this controller, the B and K 

matrices in Eq. (3.2) to (3.4) become time-varying.  The “Linear Time Varying Model 

Predictive Control” (LTV-MPC) method is also used.  It is unconstrained to the control 

input and works better with a slightly larger (finite) prediction horizon.  The adaptive 

controller is now based on a tracking error which includes error in acceleration.  The 

control law for the SDRE and LTV-MPC controllers is given in Eq. (5.4a) and in Eq. 

(5.4b) for the adaptive controller.  As one would intuitively attempt to apply direct 

control on the affine thrust, a Dual SDRE controller (two controllers running in parallel) 

was first simulated out of interest using the model corresponding to Eq. (5.1) to control 

thrust magnitude only, and a reduced form of Eq. (5.2) to control angles only.  The 

former was the primary and the latter was the secondary used only to provide appropriate 

control angles.  

 

 (5.4a)

 

(5.4b)

 

5.3 Simulation Results 

 

Eq. (5.1) shows that the magnitude of thrust as a control variable is an affine parameter in 

the equations of motion and can therefore be controlled directly. Using a secondary 

controller based on  Eq. (5.2) and controlling the thrust magnitude directly proves to 

result in unacceptable performance, as shown in Figures 5.3 and 5.4 with the error and 

control input responses, respectively, when the Dual SDRE controller is used.   
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Figure 5.3: State Errors using Dual SDRE Controllers for Thrust Vectoring based Control 

 
 

Convergence to the reference trajectory is achieved within 3 orbits to the best degree 

possible with a maximum thrust requirement of 20 mN/kg. The main problem with this 

approach was the steady state error being around 250 m along the x direction while 

undamped along the other dimensions.  The single controller is considered in contrast; 

error and control responses are shown in Figure 5.5 and Figure 5.6, respectively. 

 

The settling time in this case remained constant; convergence to the reference trajectory 

was also achieved within 3 orbits.  However, the magnitude of control acceleration 

required was 1 mN/kg in the steady state and just under 7 mN/kg in the overshoot.  

Therefore, it is more efficient to use the single controller over the duel controllers where 

the interaction affect always prolonged convergence.  Overall, this is not desirable 

performance due to the magnitude of steady state errors.  Model predictive control is 

considered next; responses are shown in Figure 5.7 and Figure 5.8, respectively. 
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Figure 5.4: Control Input Using Dual-SDRE Controllers for Thrust Vectoring Based Control 

 
 

 

 

Figure 5.5: State Errors using Single SDRE Controller for Thrust Vectoring Based Control 
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Figure 5.6: Control Input Using Single SDRE Controller for Thrust Vectoring Based Control 

 
 

 

The response shown in Figure 5.8 is better compared to the Duel SDRE controllers where 

the maximum control input is 3.3 mN/kg for the Duel LTV-MPC controller.  The error 

response in Figure 5.7 shows a 400 m steady state along the x axis, 600 m along the z 

axis and an even less improvement along the y axis with no overshoot.  So what is 

“better” depends on the mission requirements; however, this controller is also inferior 

compared to the single LTV-MPC controller and has only been shown to for 

demonstration only.  Error and control input responses for the single LTV-MPC 

controller are shown in Figure 5.9 and Figure 5.10, respectively. 
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Figure 5.7: State Errors using Dual LTV-MPC Controllers for Thrust Vectoring  
Based Control 

 

 
Figure 5.8: Control Input using Dual LTV-MPC Controllers for Thrust Vectoring  

Based Control 
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Figure 5.9: State Errors using Single LTV-MPC Controller for Thrust Vectoring  
Based Control 

 
 

 
Figure 5.10: Control Input using Single LTV-MPC Controller for Thrust Vectoring  

Based Control 
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In Figure 5.9, convergence is achieved by 1 orbit for in-plane motion and by 3 orbits for 

out-of-plane motion.  Thrust settles to the order of 1 mN/kg which may fall within the 

deadzone of a typical actuator.  Angle variation is large, but becomes irreverent as thrust 

approaches zero.  

 

Finally, the adaptive controller is considered.  Since it is not based on any model, rather 

directly on a Lyapunov function whose combination of coefficients (within their 

respective valid ranges are effectively used as tuning parameters; see discussion in 

Section 3.2.3.2 on stability of Adaptive controller design), the affinity of the equations of 

motion is irrelevant.  Figures 5.11 and 5.12 illustrate the error and control input 

responses, respectively. 

 

 

 

Figure 5.11: State Errors using Adaptive Controller for Thrust Vectoring Based Control 
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Figure 5.12: Control Input using Adaptive Controller for Thrust Vectoring Based Control 

 
 

Errors converge to a steady state error of less than 10 m within 10 orbits in-plane.  Out-

of-plane convergence is achieved by 100 orbits.  Thrust settles to less than 1 mN/kg 

which is a profound result, especially when even the maximum specific control 

acceleration in overshoot is 0.75 mN/kg.  Control angle variation also remains well 

within reasonable bounds in the transient phase of the response, for the conditions 

simulated.  A methodological tuning method would definitely have the potential to 

further improve this result.  This may be desirable for out-of-plane motion where the 

settling time may not be reasonable for most mission applications.  The reason for 

otherwise superior performance in-plane is due to the adaptive nature of the controller 

where it would innately compensate for unmodeled dynamics which are lost in the 

linearized models upon which the SDRE and LTV-MPC methods are based.  Given how 

out-of-plane dynamics are completely uncoupled even in the nonlinear model of the 

plant, it should be possible to use a hybrid controller where in-plane dynamics are 

stabilized via the adaptive controller and the out-of-plane dynamics stabilized via the 

faster LTV-MPC only along this direction.  This could be a more robust approach. 
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Finally, the sensor inoperative fault case is simulated for thrust vectoring based control 

using the adaptive controller.  The results are shown in Figures 5.13 and 5.14. 

 

Figure 5.13: State Errors using Adaptive Controller for Thrust Vectoring Based Control 
subjected to Sensor Inoperative Condition 

 

Figure 5.14: Control Input using Adaptive Controller for Thrust Vectoring Based Control 
subjected to Sensor Inoperative Condition 
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As a summary, Figures 5.15-5.19 shows the resultant trajectory followed by all the 

controllers.   

 

Figure 5.15: Trajectory using Dual SDRE Controller for Thrust Vectoring Based Control 
 

 

Figure 5.16: Trajectory using Dual LTV-MPC for Thrust Vectoring Based Control 
 

Initial state error is  
1 km along each axis. 

Initial state error is  
1 km along each axis. 
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Figure 5.17: Trajectory using SDRE Controller for Thrust Vectoring Based Control 
 
 

 

Figure 5.18: Trajectory using LTV-MPC for Thrust Vectoring Based Control 

Initial state error is  
1 km along each axis. 

Initial state error is  
1 km along each axis. 
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Figure 5.19: Trajectory using Adaptive Controller for Thrust Vectoring Based Control 
 

 

5.4 Summary 

 

For systems where there are non-affine control inputs, the utilization of controllers in 

parallel was shown to be non-optimal when the control inputs are coupled.  The fact that 

the control angles in Figures 5.5 and 5.7 remain under 20° indicates that linearization 

may be a feasible alternative to taking the triple time derivative to make the control input 

variables affine as the small angle approximation would hold.  This will be done in the 

upcoming SRP chapter.  For controllers with large control angle requirements seen in 

some of the responses, linearization would violate small angle approximation; vigorous 

tuning would be required and would not be practical.  Only the adaptive controller 

converged properly (somewhat the LTV-MPC as well) and can therefore be considered as 

the only successful (again, other than perhaps the LTV-MPC) one for the case of thrust 

vectoring.  The dual controllers did not converge satisfactorily at all.  From the similarity 

to a Lissajous trajectory, it is clearly shown that the Lyapunov trajectory is a subset of the 

Lissajous trajectory.  

Initial state error is  
1 km along each axis. 
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CHAPTER 6  

Formation Control Using  

Solar Sail Propulsion 
 

 

 

6.1 Introduction 

 
Control using solar radiation pressure (SRP) has the main advantage of requiring zero 

fuel.  The life of the satellite then becomes solely a function of the mechanical life of its 

components.  This makes SRP control highly worth investigating.  The aim of this 

chapter is to demonstrate, by simulation, the feasibility of SRP based control for the 

considered system and to compare the performance of the various considered controllers. 

Figure 6.1 illustrates a solar sail on a satellite for better understanding for the reader. 

 

 

Figure 6.1: Illustration of Solar Sail on Spacecraft 
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6.2 System Model and Controller Design 

 
Solar Radiation Pressure is a linear combination of three components of force: 

 

ௌோ௉ܨ ൌ ௥௦ܨ ൅ ௥ௗܨ ൅  ௔ (6.1)ܨ

 

Each force component can be defined with reference to the variables shown in Figure 6.2 

where L is the unit vector defining the direction of the Sun-line and N is the sail normal. 

 

 Specular:   

௥௦ܨ ൌ ࡺ௦ሺܣ௥௦ܲߩ2 · (6.2a) ࡺሻଶࡸ

 

 Diffuse:    

௥ௗܨ ൌ ࡺ௦ሺܣ௥ௗܲߩ · ࡸሻ൫ࡸ ൅ ࡺ2
3ൗ ൯ (6.2b)

 

 Absorption:   

௔ܨ ൌ ࡺ௦ሺܣ௔ܲߩ · (6.2c) ࡸሻࡸ

 

where ߩ is the efficiency coefficient, ሺߩ௥௦, ,௥ௗߩ ௔ሻߩ ൎ ሺ1,0,0ሻ  ( ∑ρ = 1, by conservation 

of energy principle), P is the mean momentum flux near the Lagrangian points (ܲ ൎ

4.5 ൈ 10ି଺ N/mଶ) and ܣ௦ is the illuminated surface area. 

 

Since their efficiencies are negligible, diffuse and absorption are negligible.  Also, as 

specular efficiency is taken to be 100%, a perfectly reflective surface is being assumed. 
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Figure 6.2: Free Body Diagram of Sail 

 

Given that the mass of the primaries remains constant, the only force acting on the sail is 

that of photonic bombardment, which simplifies to: 

 

ܽௌோ௉ ൌ ࡺ௦ሺܣ2ܲ · ሻଶࡸ ࡺ ݉ ൌ ܽ௠௔௫ܿݏ݋ଶߛ cosଶ ߚ ⁄ࡺ  (6.3) 

 

Notice that ሺࡺ · ሻ૛ࡸ ൌ ሺ|ݏ݋ܿ|ࡸ||ࡺଶߛ cosଶ ሻ૛ߚ ൌ cosଶ ߛ cosଶ  by the definition of the ,ߚ

dot product; where |N|·|L|=1 since both N and L are unit vectors. ܽ௠௔௫ ൌ 2ܲ ஺ೞ

௠
 is the 

characteristic acceleration and ݉ is the ݏݏܽ݉ ݐ݂ܽݎܿ݁ܿܽ݌ݏ. 

 

In 3-dimensional space, this acceleration can be decomposed in terms of ߛ and ߚ with 

respect to the axes of the leader centered frame as defined in Eq. 2.5.  The unit vector 

defining the orientation of the sail normal is denoted by the vector N.  Parameter ߛ is that 

the angle the in-plane projection of the sail normal makes with respect to the positive x-

axis and ߚ is the out-of-plane angle of the sail normal as shown in Figure 6.3.   
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Figure 6.3: Convention Used To Define Control Angles 

 

By this convention of control angles, the orientation of the sail normal is defined by, 

 

ܰ ൌ ൭
cos ߛ cos ߚ
cos ߛ sin ߚ

sin ߚ
൱ (6.4) 

 

Acceleration can only act along the sail normal, 

 

ܽௌோ௉ ൌ ܽ௠௔௫ cos ߛ cos ߚ · ොܠ ൅ ܽ௠௔௫ cos ߛ sin ·ߚ ොܡ ൅ ܽ௠௔௫ sin ·ߚ  ො (6.5)ܢ

 

Separating and rewriting the components of the acceleration vector after substituting aSRP, 

 

ܽ௫ ൌ ܽ௠௔௫ܿݏ݋ଷݏ݋ܿߚଷߛ (6.6a) 

ܽ௬ ൌ ܽ௠௔௫ܿݏ݋ଷݏ݋ܿߚଶߛ݊݅ݏߛ (6.6b)

ܽ௭ ൌ ܽ௠௔௫ܿݏ݋ଶݏ݋ܿߚଶߚ݊݅ݏߛ (6.6c) 

 

In the case of a planet-moon system, L defines the Sun-line direction vector and is not 

always collinear with the x-axis.  In this system it will constantly be changing direction in 
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a sinusoidal fashion with an angular frequency that is equal to the difference of the 

angular velocities of the two primaries. 

 

ܮ ൌ ቌ
ሻݐሺ߱௦ݏ݋ܿ

െ݊݅ݏሺ߱௦ݐሻ
0

ቍ (6.7) 

 

߱௦ ൌ ݊ெ െ ݊ா and ሺ݊ெ, ݊ாሻ is the angular velicity of ሺMoon, Earthሻ.  The fact that the 

last element is zero implies that the synodic component of the orbit is being neglected.  

This is a common simplification in the literature [9-12,14,15].  Substituting Eq. (6.7) in  

Eq. (6.3) yields the model of acceleration of a solar sail in a planet-moon system. 

 

ܽ௫ ൌ ܽ௠௔௫ܿݏ݋ଷݏ݋ܿߚଶߛcos ሺ߱௦ݐ െ  ሻ (6.8a)ߛ

ܽ௬ ൌ െܽ௠௔௫ܿݏ݋ଷݏ݋ܿߚଶ݊݅ݏߛሺ߱௦ݐ െ ሻ (6.8b)ߛ

ܽ௭ ൌ ܽ௠௔௫ܿݏ݋ଶݏ݋ܿߚଶߚ݊݅ݏߛ (6.8c) 

  

Feedback control gain is proportional to state error; therefore the equation of motion 

representing the error of the instantaneous state and the nominal is determined.  However, 

the goal is to linearize the SRP portion of the differential equation such that the nonlinear 

term cancels out.  This term exists due to the presence of the sail and is instates 

contribution of the particular solution.  It is called nonlinear since it ruins the necessary 

form of the matrix equation used in linear control design (state space form) with a 

lingering constant in the equation that neither multiplies with a state variable nor a 

control input. 

 

Firstly, the equations of motion, including the SRP contribution, must be completely 

linearized to have an applicable model of real satellite motion.  The linearization process 

involves taking the derivative with respect to each control variable, evaluating the result 

at the nominal and multiplying by the small change in that variable – this is the definition 

of linearization as shown in Eq. (6.9).  These delta terms represent the small variations in 

the aforementioned quantities which will be used as control variables.  The nominal in-

plane control angle γn is set to 0 (meaning that the normal of the sail is to nominally be 
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parallel with the x-axis), small angle approximation is applied, and finally, the nominal 

out-of-plane control angle βn is set to 0 as well (implying the normal of the sail is to 

nominally be in-plane).  Note that since the angles are subjected to small angle 

approximation, they must not become large in simulation. 

 

ؠ׏ ܽߜ
݀

݀ܽ
൅ ߛߜ

݀

ߛ݀
൅ ߚߜ

݀

ߚ݀
 

 

(6.9) 

௔ୀ஺೙, ఊୀఊ೙,ఉୀఉ೙ۂ௫ܽ׏  
ൌ cosଷ ௡ߚ cos ωୱt ܽߜ ൅ ௡ߚଷݏ݋௡ܿܣ sin ωୱt ߛߜ

െ 3ܽ௠௔௫ cos ωୱt sin  ߚߜߚଶݏ݋௡ܿߚ
(6.10a) 

 

௬ඏܽ׏
௔ୀ஺೙, ఊୀఊ೙,ఉୀఉ೙

ൌ െcosଷ ௡ߚ sin ωୱt ܽߜ ൅ ௡ߚଷݏ݋௡ܿܣ cos ωୱt ߛߜ

൅ ௠௔௫ܣ3 sin ωୱt sin  ߚߜߚଶݏ݋௡ܿߚ

 

(6.10b)

௔ୀ஺೙, ఊୀఊ೙,ఉୀఉ೙ۂ௭ܽ׏
ൌ cosଶ ௡ߚ sin ௡ߚ ܽߜ ൅ ௡ܣ ሺcosଷ ௡ߚ െ 2 sinଶ ௡ߚ cos ௡ሻߚ  ߚߜ

 

(6.10c) 

Eq. (6.10) is evaluated for γn ൌ  0  and the out-of-plane angle remains variable in case it 

is desired to be nonzero as to maintain a constant out-of-plane displaced trajectory.  In 

such a case the factor cosଷ  ௡ is to be applied to an and bn in Eq. (2.19) to appropriatelyߚ

determine the zero-force reference trajectory. 

 

Now that δa, δγ, and δβ are no longer arguments of trigonometric functions, they can be 

isolated in matrix form and are termed to be “affine control inputs”.  Control algorithms 

that are based on non-affine control inputs are still a topic of active research in the field 

of mathematics.  The reader can verify that the application of small perturbation theorem 

and small angle approximation leads to all nonlinear terms cancelling out as the equations 

of motion approach the nominal equations as shown in Eq. (2.17). Eq. (6.10) is evaluated 

and separated into the control coupling matrix, B, and the control input vector, u, as is 

necessary for substitution in Eq. (2.11).  Eq. (6.11) is the state space model which the 

linear controllers are based on and Eq. (6.12 is the nonlinear on which the control inputs 
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are applied.  The control law for the SDRE and LTV-MPC controllers is still given as 

shown in Eq. (5.4a) and in Eq. (5.4b) for the adaptive controller.   

 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

ሶݔ
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ሶݖ
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൅

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ૙૜ൈ૜

cosଷ ௡ߚ cos ωୱt ௡ߚଷݏ݋௡ܿܣ sin ωୱt െ3ܽ௠௔௫ cos ωୱt sin ߚଶݏ݋௡ܿߚ
െcosଷ ௡ߚ sin ωୱt ௡ߚଷݏ݋௡ܿܣ cos ωୱt ௠௔௫ܣ3 sin ωୱt sin ߚଶݏ݋௡ܿߚ
0 cosଶ ௡ߚ sin ௡ߚ 0 ௡ሺcosଷܣ ௡ߚ െ 2 sinଶ ௡ߚ cos ے௡ሻߚ

ۑ
ۑ
ۑ
ۑ
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ې

൝
ܽߜ
ߛߜ
ߚߜ

ൡ 

 

(6.11)

  

൝
ሷܺ
ሷܻ
ሷܼ
ൡ ൌ ቐ

ሷܺ௥
ሷܻ௥
ሷܼ௥

ቑ ൅ ቎
cosߛ2ݏ݋ܿߚ3ݏ݋ܿݔܽ݉ܽ ሺ߱ݐݏ െ ሻߛ

െܽ݉ܽ݊݅ݏߛ2ݏ݋ܿߚ3ݏ݋ܿݔሺ߱ݐݏ െ ሻߛ
ߚ݊݅ݏߛ2ݏ݋ܿߚ2ݏ݋ܿݔܽ݉ܽ

቏ (6.12)

 

When this procedure is applied to some alternative sail normal definitions, the result 

corresponding to the x and y direction usually remains the same, but sometimes terms 

containing δβ vanish, thus leaving the z component of motion uncontrollable.  Thus, the 

convention defined in Figure 6.3 was specially selected after consideration of various 

alternatives including those proposed in [9,11,12,20]. 

 

6.3 Simulation Results 

 
The same initial conditions were used in simulating control with SRP as was used in 

other sections; a 1 km initial position error along all dimensions.  Figures 6.4 and 6.5 

show the response and control input variation, respectively, when the SDRE controller is 

used. 
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Figure 6.4: State Errors using SDRE Controller for SRP Based Control 
 
 

 

 
 

Figure 6.5: Control Input using SDRE Controller for SRP Based Control 
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The term “control effort” is no longer appropriate considering no fuel is ever burnt.  

However, if it is considered that control effort has to do with important power budget 

constraints, as is with miniature satellites, then a minimal change in sail area is desirable.  

Accordingly, this control method yields in a change in sail area of -2.7·10-3 m2/kg initially 

with control angles within 2°.  This causes a control acceleration with components  

-2.5 N/kg, -0.1 N/kg and 50 mN/kg along the x, y and z directions, respectively, and is of 

similar order of magnitude as quoted in literature [52] for solar sailing propulsion in this 

system.  Note that negative force cannot be applied with a solar sail.  The values given 

for “control acceleration” as “specific force” is actually the resulting (induced, hence 

“control”) acceleration experienced by the satellite when the nominal area is reduced, as 

this is how the equations of motion are formulated.   Steady state is reached when 80% of 

the first orbit elapses.  Figure 6.4 illustrates an overdamped response with steady state 

error along the axis transverse to the primaries.  This error is bounded within 50 m.  The 

overall transient response diminishes by the time 20% of the first orbit has elapsed.  

Figures 6.6 and 6.7 show the response and control input variation, respectively, when the 

LTV-MPC is used.  The overall performance is superior to that of the SDRE controller.  

 

 
Figure 6.6: State Errors using LTV-MPC Controller for SRP Based Control 
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Figure 6.7: Control Input using LTV-MPC Controller for SRP Based Control 

 
 
 

Settling time is a mere ~1% of the first orbit.  Appropriately, this is done only through 

large control inputs. The maximum said area change is -8.5 m2/kg, which still leaves a net 

resultant positive sail area, and in- and out-of-plane control angles of -43° and 2.24°, 

respectively.  Specific force does not exceed 5 N/kg along any dimension; it may seem 

much compared to the miliNewtons otherwise being quoted, but to put this into 

perspective, 5 N is equivalent to about the weight of a half-empty jar of peanut butter.  

Next in Figures 6.8 and 6.9, the results of the adaptive controller are shown. 

 

This controller takes the longest to settle of the three, requiring 30 orbits.  It represents 

the complete opposite type of behavior as compared with the LTV-MPC with respect to 

the settling time – control effort trade-off.  For this controller, maximums of  

67×10-3 m2/kg of sail area change and control angles changes within 0.0075°.  The 

transient response dissipates within 0.7% of the first orbit. 
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Figure 6.8: State Errors using Adaptive Controller for SRP Based Control 

  
 

 
Figure 6.9: Control Input using Adaptive Controller for SRP Based Control 
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Finally, the sensor inoperative fault case is simulated for SRP based control using the 

LTV-MPC controller.  The results are shown in Figures 6.10 and 6.11. 

 

Figure 6.10: State Errors using LTV-MPC Controller for SRP Based Control subjected to 
Sensor Inoperative Condition 

 

 

Figure 6.11: Control Input using LTV-MPC Controller for SRP Based Control subjected 
to Sensor Inoperative Condition 
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As a summary, Figures 6.12-6.14 show the resultant trajectory followed by all the 

controllers. 

 

Figure 6.12: Trajectory using SDRE Controller for SRP Based Control 
 
 

 
Figure 6.13: Trajectory using MPC Controller for SRP Based Control 

 

Initial state error is  
1 km along each axis. 

Initial state error is  
1 km along each axis. 



112 
 

 

Figure 6.14: Trajectory using Adaptive Controller for SRP Based Control 
 

 

6.4 Summary 

 

The LTV-MPC demonstrated the most reasonable performance, as far as the question of 

robustness goes, while the SDRE controller does not display adequate steady state 

properties and the adaptive controller performs better than the LTV-MPC in some ways.  

Although the adaptive controller displayed the best performance, it is very sensitive to 

external disturbances and angle variations of less than 1° would be totally impractical in 

reality where noise from on-board electronics and actuators among other unknown 

influences would greatly affect the actual performance.   Regardless that the tuning can 

fix this problem, this was a study of robustness where tuning parameters were unchanged 

to see how the controllers would perform in unexpected off-design operations such as 

initial error.  The definite conclusion that was indeed made was that the classical SDRE 

controllers have been performing inferior to the newly emerging predictive control 

method in space applications.   

 

 

Initial state error is  
1 km along each axis. 
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CHAPTER 7  

Conclusions 
 
 
 

 

Formation flying is being sought after as the underlying structure of many planned 

spacecraft missions spanning over many applications including communications and 

observation.  As discussed in Chapter 1, the improvements leading to enhanced reliability 

of technologies such as those based on MEMS and fuel efficient propulsive methods 

against various external disturbances and unmodeled dynamics, and above all with 

improved economic feasibility, are the current challenges facing engineers that wish to 

push the threshold of space flight advancement.  Typically, solar radiation pressure is 

considered an external disturbance or as often is the case in literature, not accounted for 

at all.  Conversely, in this thesis, its existence was taken advantage of, and was used as 

the very means of propulsion for the spacecraft with control inputs representing only 

geometric reconfigurations of a momentum transferring reflective surface.  Also, this 

thesis presented an analysis of control performance subjected to various disturbances that 

were aimed to incorporate more reality into the simulation.  The controllers were 

implemented on a real physical system in a laboratory environment to validate them for 

the proposed use, and verify the trends and characteristics demonstrated in simulations.  

The main results and contributions of this research are summarized in this chapter, which 

closes with some future work recommendations. 

 

7.1 Contributions Outline 

 

Referring to the Thesis Map presented in Figure 1.1, the conclusions that can be made 

with respect to the two foci of the study are now articulated. 
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7.1.1 Thrusters 

 

LQR control was shown to be relatively the worst performing controller overall.  The 

MPC controller is not any more difficult to apply in MATLAB simulations yet it is not 

very popular in the literature relating to space systems as compared to LQR.  The LQR 

controller had a tendency to yield larger control inputs, which is generally undesirable.  

The performance of the MPC controller displayed a response that was closest to being 

critically damped.  The form of MPC control that was used herein was Infinite Time 

Horizon Unconstrained Model Predictive Control.  It is therefore more flexible in the 

sense that it can account for control and output constraints if one desired to include so 

and optimization is can be over a time interval that goes a specified number of time steps 

into the future based on the model provided. Adaptive control demonstrated the greatest 

resilience against sensor noise, followed by MPC control.  The same conclusion was 

made with regards to controller performance subjected to thruster instability.  A 

consistent result for the simulations presented in this thesis and on other systems as well 

is that the MPC controller tends to be relatively more sensitive to velocity noise than the 

other controllers, but still performing better than the LQR controller.  The adaptive 

controller tended to allow for the largest errors when sensors were disabled, limiting itself 

to use smaller control forces.  When the simulations were repeated using LQE state 

estimation, the performance of all controllers greatly improved; however, the LQR 

controller came out to be the superior controller specifically for the thruster instability 

fault case.   

 

With regards to the hardware-in-the-loop testing (2-axis thrusters), the simulations 

predicted a longer settling time than what came to pass in reality.  This is because the real 

system had friction that introduced more damping.  The tether was also a disturbance 

which made the unit spin more than it otherwise would have, as it presented a resistance 

anchored off the center of mass of the unit.  Since the components of thrust were 

decomposed along the actuating axes, the only issue spinning caused had to do with the 

magnitude of thrust delivered along the resultant line of force, considering that the 

thrusters had a constant magnitude on-off output.  Thus, more rotational motion extended 
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the transient response.  Finally, the voltage of the batteries powering thrusters made a 

significant impact on the frequency and magnitude of overshoots; thus, settling time.  

When the thrusters fired with lower power due to low batter charge, the system moved 

slower overall, and therefore built up less momentum, thus increasing the effectiveness of 

frictional damping (mass ൈ acceleration ا friction).  This is the first such conclusion 

made about the SAFE system.  Other less significant disturbances came from a minor 

slant in the table going downward towards the +y axis, and friction being a function of 

the position on the table due to dust particles that may have landed.  In multiple runs of 

the same test using the same controller, the response displayed the same distinct 

characteristics, but with a settling time varying by up to ~20%.  The overall results of the 

SAFE test and simulations of formation flying at the Earth-Moon L2 point matched in 

terms of controller characteristics, and are therefore taken to be a good parallel. 

 

7.1.2 Advanced Configurations 

 

Actuation via the harnessing of solar radiation pressure and thrust vectoring was 

analyzed.  Both configurations involve variables that were to be used as control inputs a 

nonlinear functions embedded with the equations of motion as non-affine in nature.  In 

the case of solar sailing, adding perturbations to the area and two angles followed by 

linearization made the resulting equation have affine control inputs which were the 

perturbations themselves.  This approach was successful because the controller was tunes 

well enough to bound the change in area to less than that of the nominal sail area so that 

area would never be less than zero and the control angles within the range of small angle 

approximation.  Linearization however did not work for thrust vectoring.  A completely 

unorthodox formulation of dynamics was devised for this case which involved the 

controller based on jolt-dynamics rather than acceleration-dynamics and having the 

calculated control inputs be the rate of change of thrust and rate of change of angles with 

respect to time, quantities which would then be numerically integrated and applied to the 

acceleration-dynamics based plant.  In the thrust vectoring simulations, the adaptive and 

MPC controllers again converged most efficiently.  Control angles in with MPC control 

did happen to make complete revolutions but that was okay since no small angle 



116 
 

approximation was made and validity of such a response therefore holds.  The MPC and 

SDRE controllers experienced some steady state error.  This was due to integrated 

position not being included as states, which is a somewhat abstract quantity that cannot 

be directly measured.  In the solar radiation pressure simulations, the SDRE controller 

again displayed some steady state error whereas the MPC and adaptive controllers did 

not.  The MPC controller had a much shorter settling time but utilized control inputs 

which were greater in magnitude, which does not really matter for solar sailing since the 

propulsive force is free and reasonably larger control variations may be more practically 

implemented in reality.  Overall, control using SRP was more efficient than with thrust 

vectoring in spite of both configurations making use of the same principle. 

 

7.2 Future work 

 

Some areas of interest pertaining to the advancement of this study are now identified. 

 In practice, there would be a delay in reorienting the thrust vector due to the 

process of nozzle reconfiguration or in changing the attitude of the satellite, 

whichever approach is taken.  In this study, it was assumed that this effect was 

negligible since the time taken to even reorient the satellite would be much less in 

comparison to the period of the orbit.  This also applies to the reconfiguration of a 

solar sail in response to a control command, and was also the same assumption 

that justified using an identity matrix in the state space equations modeling the 

effect of thrust in the equations of motion, given that the build-up of thrust into 

steady state operation required a time that is much less than the period of the 

orbit.  Other than that, communication delay and the processing of sensor data can 

introduce another delay, especially if it is based on optical images or star sensors.  

Therefore, a study involving controller design that accounts for the various delays 

could possibly be valuable. 

 The advances of model-less adaptive control were shown to be of great success in 

this study, it would thus be beneficial to look at other types of adaptive controllers 

with algorithms for self-tuning.  Such a controller could be applied to anything at 
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all and potentially yield superior performance over the usual model-based control 

methods.   

 Hardware-in-the-loop testing with 6-degrees of freedom.  It is proposed that a 

system be built similar to the SAFE system but as an AUV.  An IMU + radio 

transmitter would be placed on a human leader and the follower would 

autonomously maintain formation around it.  Such a 3-dimensional environment 

would be more similar to the space environment, as well as lead into other 

potentially useful applications. 

 Bellman’s [13] research on the determination of optimal trajectories using 

dynamic programming shows how to rewrite differential equations or cost 

functions to be minimized to such that are in discrete recursive form, such that  

the extrema could be searched for.  Instead of differentiation, it was suggested 

that functions be approximated by Legendre polynomials and the coefficients be 

numerically solved for.  This approach has the prime advantage of being 

relatively quicker in convergence, and thus creates room to include more than six 

state variables in the equations of motion for which optimal trajectories are sought 

with respect to fuel, mass, etc.  A predictive controller can be formulated using 

this approach, and serve to solve systems that may not necessarily be writable in 

state-space form.  Indeed, this may be applied in the near future as an extension of 

this study. 
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