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Abstract

Background: Biological sex is an important consideration in biomedical research, yet females are still underrepresented in both
human and animal biomedical research. Hesitancy to include female subjects is partially due to the hypothesis that biological
rhythms driven by menstrual cycles, and occurring on the timescale of roughly 28 days, increase biological variability and
weaken statistical power.

Objective: We aimed to determine if variability of physical activity (PA) is affected by biological sex, and if so, whether having
menstrual cycles (as indicated by temperature rhythms) contributes to increased female PA variability. We then sought to
compare the effect of sex and menstrual cycles on PA variability to the effect of PA rhythms on the timescales of days and weeks
and to the effect of non-rhythmic temporal structure in PA on the timescale of decades of life (age).

Methods: We used minute-level metabolic equivalent task (MET) data collected using a wearable device across a 206-day study
period for each of 596 individuals as an index of physical activity (PA) to assess the magnitudes of variability in PA accounted
for by biological sex and temporal structure on different timescales. We represented intraindividual variability in PA with
consecutive disparity index (CDI).

Results: Females (regardless of whether they had menstrual cycles) demonstrated lower intraindividual variability in PA than
males (Kruskal-Wallis, H=29.51, P<.001). Furthermore, people with menstrual cycles did not have greater intraindividual
variability than people without menstrual cycles (Kruskal-Wallis, H=0.54, P=.46). PA rhythms differed at the weekly timescale:
individuals with increased or decreased PA on weekends had larger intraindividual variability (Kruskal-Wallis, H=10.13,
P=.001). Additionally, intraindividual variability differed by decade of life, with older age groups tending to have less variability
in PA (Kruskal-Wallis, H=40.55, P=1x10-7, Bonferroni corrected significance threshold for 15 comparisons: P=3x10-3). A
generalized additive model (GAM) predicting CDI of 24-hour MET sums (variability of PA) showed that sex, age, and weekly
rhythm accounted for only 11% of PA variability.

Conclusions: The exclusion of people from biomedical research based on their biological sex or the presence of menstrual
cycles is not supported by our analysis. Menstrual cycles did not significantly affect female PA variability. Temporal structures
in PA on other timescales had significant effects on both female and male PA. Our findings highlight the potential for emerging
longitudinal data sources to allow for phenotyping of individuals by their temporal structure on relevant timescales. This may
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improve precision in statistical and machine learning models as an alternative to excluding any groups.
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Sex Differences in Variability of Physical Activity Measurements Across
Multiple Timescales Recorded by a Wearable Device
Abstract
Background: A significantly lower proportion of females participate in sufficient daily activity
when compared to males despite the known health benefits of exercise. Investment in female
sports  and  exercise  medicine  research  may  help  close  this  gap,  yet  females  are
underrepresented  in this  research.  Hesitancy to  include female  subjects  is  partially  due  to
assumptions  that  biological  rhythms  driven  by menstrual  cycles,  and  occurring  on  the
timescale  of  roughly  28  days,  increase  intraindividual  biological  variability  and  weaken
statistical  power. An  analysis  in  continuous  skin  temperature  data  measured  using  a
commercial wearable device found that temperature cycles indicative of menstrual cycles did
not  substantially  increase  variability  in  female  skin  temperature.  Here  we explore  physical
activity  (PA)  data  as  a  variable  more  related  to  behavior,  whereas  temperature  is  more
reflective of physiological changes.
Objective: We aimed to determine if intraindividual variability of PA is affected by biological
sex,  and  if  so,  whether  having  menstrual cycles  (as  indicated  by  temperature  rhythms)
contributes to increased female intraindividual PA variability. We then sought to compare the
effect of sex and menstrual cycles on PA variability to the effect of PA rhythms on the timescales
of days and weeks, and to the effect of non-rhythmic temporal structure in PA on the timescale
of decades of life (age). 
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Methods: We  used  minute-level  metabolic  equivalent  task  (MET)  data  collected  using  a
wearable device across a 206-day study period for each of 596 individuals as an index of PA to
assess  the  magnitudes  of  variability  in  PA  accounted  for  by  biological  sex  and  temporal
structure  on  different  timescales.  We  represented  intraindividual  variability  in  PA  with
consecutive disparity index (CDI). 
Results: Females  (regardless  of  whether  they  had menstrual  cycles)  demonstrated  lower
intraindividual variability in PA than males (Kruskal-Wallis,  H=29.51,  P<.001).  Furthermore,
people  with  menstrual  cycles  did  not  have  greater  intraindividual  variability  than  people
without menstrual cycles (Kruskal-Wallis, H=0.54,  P=.46). PA rhythms differed at the weekly
timescale: individuals with increased or decreased PA on weekends had larger intraindividual
variability (Kruskal-Wallis, H=10.13,  P=.001). Additionally, intraindividual variability differed
by decade of life, with older age groups tending to have less variability in PA (Kruskal-Wallis,
H=40.55, P=1x10-7, Bonferroni corrected significance threshold for 15 comparisons: P=3x10-3).
A  generalized  additive  model  (GAM)  predicting  CDI  of  24-hour  MET sums  (intraindividual
variability of  PA) showed that  sex,  age,  and weekly rhythm accounted for only 11% of the
population variability in intraindividual PA variability.
Conclusions: The exclusion of people from PA research based on their biological sex, age, the
presence of menstrual cycles, or the presence of weekly rhythms in PA is not supported by our
analysis. 

Keywords: Wearables; Activity; Sex as a Biological Variable; Time Series Variance; Timescales
of Change; Metabolic Equivalents; Metabolic Equivalent Task; Sex Differences

Introduction
Regular physical activity (PA) compared to inactivity has been associated with a lower

risk of all-cause mortality in both males and females [1]. Yet, a meta-analysis reported that PA
decreased in several nations between 1995-2017 [2]. While this decrease has occurred equally
in males and females, females are less likely to participate in sufficient exercise than males [3–
5].  An evaluation of insufficient activity (participating in at least 150 minutes of moderate-
intensity or 75 minutes of vigorous-intensity PA per week) from 1.9 million participants found
that  27.5%  of  participants  did  not  participate  in  sufficient  activity  where  women  had
significantly higher rates of inactivity than men (31.7% vs. 23.4%)[3]. As  females have been
shown to derive greater risk reduction than males for an equivalent increase in exercise [1], it
is important to identify the causes of the sex/gender gap in PA. While the reasons for the gap
are  not  well  understood  [5],  it  has  been  attributed  to  many  factors  including  children’s
exposure to rigid gender norms, women’s concerns about stereotypes, lack of leisure time, and
importantly, lack of investment in women’s and girl’s sports [4]. These knowledge gaps pervade
sports and exercise science research. An analysis of three major sports and exercise medicine
journals over three years (2011-2013) found that just 39% of participants in 1382 original
research articles were female [6]. A subsequent analysis analyzing 5,621 studies from six sport
and exercise journals (inclusive of the three journals in the previous study) examined the 7
years  following  the  previous  study  (2014-2020)  and  reported  a  lower  proportion  of  total
female participants (34%) and a significantly higher number of studies including only male
(~1630,  31%)  versus  only  females  (~315,  6%)  participants  [7].  Exclusion  of  female
participants from sports and exercise medicine studies is partially attributed to the assumption
that ovarian hormones (or menstrual cycles) increase intraindividual PA variability in females
thereby  increasing  the  difficulty  in  interpreting  results  (due  to  increased  intraindividual
variability contributing to greater interindividual variability) or complicating methodology to
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account for changes in ovarian hormones [8–11].  This assumption also implies that results
generated by male subjects are generalizable to females: if male and female baseline physiology
is the same but females have more intraindividual variability, they increase population-level
(interindividual) variability, decrease statistical power, and their inclusion provides no benefit.
However, the hypothesis that male results generalize to females (or that they have the same
baseline  physiology)  has  repeatedly  been shown to  be  false[1,12–14].  This  in  itself  should
motivate the inclusion of females, but as female participation in sports and exercise research is
still  low  relative  to  male  participation  [6,7],  it  is  important  to  assess  the  extent  to  which
menstrual cycles and other biological and social rhythms interfere with researchers’ ability to
analyze  PA.  Building  on  previous  work  exploring  physiological  variability  from  distal  skin
temperature measured by a commercial  wearable [15],  here we explore the intraindividual
variability in physical activity (PA) between sexes using longitudinal PA measurements from
298 males and 298 females who were using Oura Rings during 2020.

Numerous animal studies have rejected the hypothesis that females are more variable in
both physiology and behavior  [16–19],  but far  fewer investigations  of  this  hypothesis  have
been performed in humans [15,20].  This  is in part due to historical difficulty in generating
longitudinal data sets that were also big enough to be representative of both sexes broadly. The
emergence of digital tools such as wearable devices (wearables) in daily life has led to a rapid
change in the amount of longitudinal data that can be easily generated on individual study
subjects.  Data  from  wearables  provides  unique  opportunities  to  explore  physiological  and
behavioral variability between sexes both across populations and within individual time series
data [21]. 

In our previous work,  we used continuous longitudinal  distal  skin temperature data
generated by Oura Ring users in situ, to test the hypothesis that females are statistically more
physiologically variable than males [15]. Temperature was chosen as prior work indicates that
skin temperature can be used to identify physiological changes, such as a 28-day oscillating
skin temperature pattern generated by menstrual cycles [22,23]. Using a data set of minute-
level skin temperature data from 600 individuals (300 males, 300 females) over six months, we
developed  a  tool  capable  of  determining cyclic  status,  where  female  data  which  showed  a
roughly 28-day pattern in  nightly maximum temperature  were labeled as  cyclic,  and those
without were labeled as  acyclic.  We also found that  cyclic  and acyclic  individuals,  whether
female or male, showed substantially different patterns of change over time, such that cyclic
status was a more informative label than sex when predicting the structure of variability in an
individual’s  skin  temperature  over  time.Our  analyses  led  us  to  reject  the  hypothesis  that
females,  cyclic  or  acyclic,  should  be  excluded  due  to  concerns  over  statistical  power,  even
though our findings also supported the use of sex as a biological variable (SABV) in analyses.
That is, body temperature changes linked to menstrual cycles [24] were present in a subset of
individuals  who  self-reported  as  biological  females,  and  while  the  variability  was  not
substantially greater at multiple timescales in any of these groups, the means and the temporal
structure of temperature predictably differed by biological sex and cyclic status. Here we seek
to recapitulate these analyses on the same population but assessing PA, as this measure is less
closely  tied  to  hormonal  changes  physiologically,  and  instead  more reflective  of  behavioral
changes.

Previous studies have demonstrated that multiple timescales of change can interact to
give  rise  to  non-random  structure  in  intraindividual  variability  of  human time  series  data
[15,20,25]. This temporal structure arises specifically from interactions between physiological
rhythms, such as menstrual and circadian rhythms, societal phenomena such as the 7-day work
week, and non-rhythmic temporal scales such as aging. To the extent that variability is non-
random, it is by definition at least partially predictable. If not accounted for in experimental
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design,  then  non-random  (unaccounted)  variability  will  be  combined  with  random
(unaccountable)  variability  to  the  effect  that  statistical  tests—by  treating  all  sources  of
variability as equivalent—will yield reduced power for detecting real effects. By contrast, when
non-random  variability  is  accounted  for,  residual  variability  is  by  definition  lower,  and
statistical power is improved for the same analysis. Even while sources and structures of male
variability are not well characterized[13], the contribution these other timescales of change
impart on variability, is not often considered; without a direct comparison, we cannot know
impactful these other timescales of change are to PA analyses as compared to the effects of
menstrual cycles.

Here we used the same cohort of subjects as in our previous analysis of temperature
[15] to assess the effect of sex, cyclic status, and temporal structures in PA on other timescales
of change on intraindividual PA variability. Specifically, we seek to determine if the presence of
roughly 28-day cyclic temperature patterns we previously identified correlates with increased
intraindividual variability in PA measurements, and to quantify the extent that these roughly
28-day cycles affect  statistical  analysis  of  PA.  Additionally,  we seek to ascertain if  temporal
structure occurring on other timescales besides menstrual  cycles (e.g.,  weeks and decades)
contribute to intraindividual PA variability. Oura Ring reports activity in the form of metabolic
equivalent tasks (METs) [26] where METs express the intensity of an activity as multiples of the
MET recorded at rest [27]. Using these measurements, we quantified individual daily PA and
intraindividual variability in PA and found that biological sex,  cyclic status,  and weekly and
decadal temporal structures in PA do not explain most of the intraindividual variability in PA.

Methods 

Data source

Data originated from the TemPredict Study [26]. Physiological data were collected using
the wearable device Oura Ring (Oura Health Oy, Oulu, Finland), and self-reported demographic
information such as sex and age were collected via survey. 

Subjects

Subjects were identified by filtering methods described in “Variability of temperature
measurements recorded by a wearable device by biological sex”  [15]. Briefly, 62,653 subjects
were determined to have suitable physiological and demographic data. Responses to the survey
question ‘What  is  your  biological  sex?  Male,  Female,  Other  (please  describe).”  was used to
determine participants’ sex. 

Filtering for subjects with data files for all data types and for whom temperature data
were  available  for  all  months  between January and  November  2020  narrowed  the  subject
number  to  7,915.  Next,  subjects  who  had  less  than  70%  average  daily  completeness  in
temperature were eliminated. We chose to filter out subjects with less than 70% average daily
completeness to increase the likelihood that both sleep and wake states were captured in the
data (sleep usually covers ~33% of a day).  A cohort of 600 individuals was chosen from the
final list such that 50 individuals of each sex were present in six 10-year age bins spanning 20
to 79 years old. 

Additional filtering of the subjects was performed for this analysis. The lower limit of
real MET recordings is 0.9, which occurs when a person is asleep [28]. All MET values below
0.9  were  dropped  (due  to  non-wear  time  artifacts)  and  participants  were  evaluated  for
missingness over 206 days between April and October 2020. Four participants, two of each sex,
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with a percent missingness of MET data above 29% were removed (see Supplementary Figure
1). The final data consisted of 206 consecutive days for 596 individuals: 298 females and 298
males. Six age bins were represented equally with 49-50 individuals of each sex in each age bin:
20-29, 30-39, 40-49, 50-59, 60-69, and 70-79.

Data preprocessing

High resolution (per minute and per five minutes) and nightly aggregated data were
generated  by  the  Oura  Ring.  Data  was  stored  in  large  parquet  files  on  the  San  Diego
supercomputer (SDSC) and accessed through the Nautilus Portal [29].  We expected MET to
vary by sleep state (whether an individual is awake or asleep), therefore we labeled minute-
level data with asleep/awake labels. Nightly data, also referred to as sleep summary data, were
stored  as  a  single  parquet  file  for  each  participant.  These  data  contained  sleep-related
information such as sleep time start and sleep time end. The longest sleep duration for each
day was used to label measurements as asleep. All other times were labeled as awake. 

High-resolution distal body temperature and metabolic equivalent task (MET) data were
recorded at 1-minute intervals for 24 hours per day. These data were date-time indexed and
normalized to subjects’ local time. Duplicate time points were removed and the remaining time
points were annotated as awake or asleep. 

MET was calculated by Oura Ring before data were transferred to us for analysis. Tri-
axial  accelerometers  were used  to  estimate  metabolic  equivalents  (MET)  at  60s  resolution
during both sleep and wake periods [26]. The exact MET calculation is proprietary to Oura Ring
and  not  known  to  us;  however,  Oura  Ring  (Gen  2)  activity  measurements  displayed  high
correlation when previously validated against multiple accelerometers [30]. 

Data filling

Missing sleep state data and MET data were filled for all 596 participants. Sleep state
data described the sleep state (awake or asleep) at every minute for every participant. MET
data contained the MET value at every minute for every participant. 

To  limit  the  artifacts  resulting  from  filling,  we  assessed  the  accuracy  of  four  filling
methods on several intervals of missingness. An interval of missingness describes the number
of consecutive minutes for which there are missing values (i.e., an interval of 1440 describes a
full missing day). The intervals tested were 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 1440
minutes. The filling methods tested were: 1) a phase-dependent filler, 2) linear interpolation, 3)
global personal mean filling, and 4) zero filling (or NaN-fill). 

1. The phase-dependent filler constructs a ‘median week’ from the median value of each
minute on each day of the week across half of the dataset (103 days) for each subject (2
median weeks per subject). If no median value exists for a minute in the constructed
median week, a value was forward-filled from the median value of the preceding minute.
The minutes without data in the 103-day period from which the week of median values
was constructed were filled based on the minute and day of the week in which they
occurred.

2. Linear interpolation was achieved with the interpolate method from the Python package
pandas  (pandas.DataFrame.interpolate,  version  2.2.1)[31].  A  two-way  limit  direction
was used such that missing data from the first minute in the data could be filled.

3. The global personal median method finds the median value for each person across the
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entire dataset and fills the missing values with this median value. 
4. The zero-filling method fills  all  missing values with zero.  This  method was included

because the sum of MET values was used to summarize daily activity. Zero fill equates to
the effect  of  not  filling these  values  because NaNs are  treated as zeros during daily
summation (i.e. not a number or NaN-fill). 

To  test  the  accuracy  of  the  filling  methods  on  each  interval,  a  test  data  frame  was
constructed.  For  each  participant,  simulated  missing  data  were  constructed  by  inserting
intervals of missingness starting at randomly chosen minutes. Each participant had 3,995 extra
missing  data  points  composed  of  5,  10,  20,  40,  80,  160,  320,  640,  1280,  and  1440  length
intervals of missingness. The intervals were allowed to overlap and occur on the same day. The
simulated intervals of missingness were then filled using each of the four filling methods. After
filling, the predicted values in the sleep state data frame were rounded to zero or one to reflect
a prediction of awake or asleep. 

The performance of each method for each person on each interval size was evaluated by
the sum of the absolute differences between the predicted and actual values of the test indexes.
Because  some  participants  did  not  have  enough  data,  some  simulated  missing  data  had
indeterminate error (the ‘actual’ value was missing): 0.25% of the simulated missing data in
the MET filling test had indeterminate error and 0.49% of the simulated missing data in the
sleep state filling test  had indeterminate error.  The best  method for each interval  size was
determined  by  the  smallest  sum of  absolute  differences  across  all  individuals.  In  the  MET
dataset, the best method for intervals of missingness of size less than or equal to 40 minutes
was linear interpolation and for intervals with size greater than 40 minutes the best method
was phase-dependent filler (Error data shown in Supplementary Figure 2). In the sleep state
dataset, the best method for intervals of missingness less than or equal to 320 minutes was
linear interpolation and for intervals of missingness greater than 320 minutes the best method
was phase-dependent filler  (Error data shown in Supplementary Figure 3).  The best  filling
method for each interval of missingness was applied to each dataset before any analyses were
performed.

The  sum  of  absolute  differences  across  all  test  intervals  (filling  error)  was  not
significantly different between males, cyclic females, and acyclic females in the sleep state and
MET  data  tests  (Kruskal-Wallis:  MET:  H=1.97  P=.37,  Supplementary  Figure  4.  Sleep  State:
H=0.26, P=.88, Supplementary Figure 5). 

Filled  data  were  used  for  every  analysis  described  below,  except  where  explicitly
described to not have been used (see Analysis by Weekend Rhythm in Physical Activity).

Statistical Methods 

Kruskal Wallis H tests, Bonferroni correction, and post-hoc Dunn’s tests

Population  differences  were  determined  using  a  Kruskal-Wallis  H  test  between
population distributions of  the relevant metric (mean, standard deviation,  etc).  Python was
used  to  carry  out  all  Kruskal-Wallis  tests  (SciPy  Python  library,  scipy.stats.kruskal,  version
1.11.2)[32]. In the case that three or more populations were compared, a Bonferroni correction
was  manually  applied  to  all  analyses  that  compared  more  than two  groups,  such that  the
threshold for  significance (P=.05)  was divided by the  number of  comparisons made.  If  the
significance threshold was met and groups were compared with a single Kruskal-Wallis test, a
post-hoc  Dunn’s  test  was  performed  using  Python  (scikit-posthocs  Python  package,
scikit_posthocs.posthoc_dunn,  version  0.9.0)[33] to  identify  the  pair-wise  population
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comparisons  that  met  significance.  Although  the  shape  of  distributions  for  male  subjects
tended to be wider than distributions for females, median values were used to determine the
population  with  the  larger  metric.  The  results  from  these  tests  and/or  the  distributions
compared with these tests were shown in most of the figures and tables (Figure 1C-E, Figure 2
A-D,  Figure  3D,  Figure  4A-B,  Supplemental  Figures  2-5,  Tables  1-6)  Population  standard
deviations  of  the  subpopulations  described  were  calculated  for  their  relevance  to  power
analysis (Supplementary Table 1-2).

Modified Cohen’s d

As the distributions in these analyses were non-normal, a modified Cohen’s d effect size
(dm) was used to describe the magnitude of the difference between two significantly different
populations (shown as P1 and P2 here)[34]:

dm = (|median(P1) – median(P2)|) / (mean(IQR(P1), IQR(P2))) (1)

where  IQR(P#)  represents  the  interquartile  range  of  the  population  (IQR-  the  difference
between the 75th and 25th percentile values). This modification to the Cohen’s  d effect size
compares medians instead of means and IQR instead of standard deviation to accommodate
calculations appropriate for skewed distributions.

The modified Cohen’s d effect size approximates the proportion of population variability
accounted for by a characteristic (sex,  age,  etc).  For example,  if  dm =1, the difference in the
medians is  equal  to  the  mean of  the  two population IQRs which means that  there  is  little
overlap of values and the characteristic accounts for a significant proportion of the variability
between those populations. Modified Cohen’s  d  was calculated between subpopulations that
were significantly different by either a Kruskal-Wallis or post-hoc Dunn’s test (Figure 1C, Figure
2C-D, Figure 3D, Figure 4B, Tables 2-5). 

Effect of subpopulations 

To  determine if  a  subpopulation  contributes  a  significant  amount  of  variability  to  a
whole population,  we first identified two groups of subjects:  the whole population and the
whole population excluding the subpopulation of interest. The second group is itself a subset of
the whole population, which makes statistical comparisons problematic: the whole population
contains every value in the subset. To avoid making comparisons between identical values, we
calculated the interquartile ranges of the 24-hour MET sums for each day for each group. This
generated two lists of 206 IQRs representing each group’s variability across the 206 days in this
study. The two lists were compared with a Kruskal-Wallis test to evaluate whether a whole
population  changed  when  a  subpopulation  was  excluded.  If  the  whole  population  had
significantly  larger  IQRs  than  the  whole  population  with  the  subpopulation  of  interest
excluded,  then the subpopulation was considered to have imparted a significant amount of
variability on the whole population. This test was performed on distributions shown in Figure
2D, Figure 3D, and results from this test are shown in Table 6. If a subpopulation did impart a
significant amount of variability on the whole population, we used Lehr’s rule to calculate the
difference in sample size required to detect the same effect (with 80% power and significance
level 0.05) when the group was included or excluded[35]:
 

n = 16(s2)/(1 - 2)2 (2)
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where n is the sample size required, s2 is the variance of the population tested, and (1 - 2) is
the difference in means between  each population. We used the median IQR across all 206 days
as a proxy for s and tested multiple values for (1 - 2): 40 (approximately the difference in 24-
hour MET sums resulting from a 20-minute walk), 100 (approximately the difference in 24-
hour  MET  sums  resulting  from  20-minutes  of  moderate  intensity  activity)  and  180
(approximately  the  difference  in  24-hour  MET  sums  resulting  from  20-minutes  of  high
intensity of activity). We chose these values to represent a difference that may be significant to
health. 

Kernel density estimate plots

Kernel  density  estimate  plots  were  used  to  ensure  distributions  were  visually
comparable  despite  differences  in  group  size  and  to  enable  comparisons  of  idealized
distributions.  Plotting was performed in Python using the seaborn library (seaborn.kdeplot,
version  0.12.2)[36])  with  the  default  kernel  (Gaussian)  and  bandwidth  smoothing  method
(Scott’s Rule). The bandwidth scaling parameter (bw_adjust) was adjusted per distribution to
create visually smoother plots and estimation ranges were limited to real values. Kernel density
estimate plots are displayed in Figure 2D, Figure 3D, and Figure 4B.

Cohort and MET Data Foundational Analysis 

To  visually  inspect  the  effect  of  time  of  day  on  activity,  a  random  subset  of  20
consecutive days of data from two randomly selected individuals of each sex was chosen to
represent a MET value time series and distribution  (Figure 1A and Figure 1B). Finding that
MET values were highly dependent on awake or asleep state as expected, MET values were
summed for each day (206 total) over 24 hours, awake time states, and asleep time states to
summarize the total daily physical activity (PA) for each person in each state. These states were
considered separately in subsequent analyses because the source of variability of daily MET
sums  is  different  in  each  state.  We  considered  five  drivers  of  variability  including  awake
movement, intentional exercise, sleep movement, time spent asleep, and time spent awake. The
first three drivers of variability are associated with a state (awake/asleep) and a MET range.
Sleep movement occurs while asleep and at a MET above 0.9 (sleep results in a MET value of
0.9[28]),  awake movement occurs while awake and at a MET between 1.0 and 1.5 (resting
while awake results  in  a  MET value of  1.0 and intentional  exercise  results  in  a  MET value
greater than 1.5 [28]), and intentional exercise occurs while awake and at a MET above 1.5.
Time spent awake and time spent asleep refer to the number of minutes per day that a person
spends awake and asleep. In contrast to 24-hour MET sums, where the number of values being
summed is always 1440 (24 hours x 60 minutes), awake and asleep daily MET sums vary by the
number of values being summed per day due to varying amounts of time spent in those states
each  day.  The  possible  sources  of  variability  in  24-hour  sums  are sleep  movement,  awake
movement, and intentional exercise. The possible sources of variability in awake daily sums are
time  spent  awake,  intentional  exercise, and  awake  movement.  The  possible  sources  of
variability in asleep daily sums are sleep duration and movement while asleep. 

A PA summary of all participants across all 206 days was constructed from the mean
and standard deviation of the 206 daily 24-hour MET sums. Individuals in each sex population
were  sorted  by  the  mean  of  24-hour  MET  sums  and  represented  as  a  point  and  line
representing +/- one intraindividual standard deviation, such that individuals at the same rank
in each population could be compared. Noticing a divergence between the populations in the
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individuals with the largest means, we performed a Kruskal-Wallis test between the top 60
males and the top 60 females (Figure 1C). 

Whole population distributions of male and female mean and standard deviation across
all 206 days for 24-hour, awake, and asleep MET sums were compared using a Kruskal-Wallis
test with a Bonferroni correction for three comparisons (three MET sum metrics each for mean
and standard deviation) (Figure 1D and Figure 1E). 

Variability Metrics of MET Sums 

In addition to standard deviation, we used three other metrics to analyze intraindividual
variability:  coefficient of variation (CV), proportional variability index (PV), and consecutive
disparity index (CDI). In prior work, we used CV and PV as controls to validate the statistical
findings from the CDI analyses [15]. We included CV and PV here for the same validation and
focused on CDI because it is the most appropriate metric of intraindividual variability for these
data because it  accounts for chronological  order and is  not dependent on the mean for its
calculation.  Further  analyses  used  only  CDI  as  a  variability  metric.  Whole  population
distributions of male and female CV, PV, and CDI across all 206 days for 24-hour, awake, and
asleep MET sums were compared using a Kruskal-Wallis test with a Bonferroni correction for
three comparisons (three MET sum metrics each for CV, PV, and CDI). 

Coefficient of variation (CV)

CV is a common metric for describing temporal variability [37]. Here it describes a participant’s
standard deviation(σ) across all 206 days relative to their mean across all 206 days; 

CV =  / mean (3)

CV is limited by its sensitivity to rare events and its dependence on the mean [37] (Figure 2A,
Table 2).

Proportional variability index (PV) 

The proportional variability index (PV) was developed to solve some of the limitations of CV. PV
quantifies variability by calculating the average percent difference between all combinations of
measurements [37–40]; 

PV = 2((1-(min(zi, zj)/max(zi, zj))) / n(n-1) (4)

where  n  =  total  number  values,  z  =  a  list  of  values  on  which  pairwise  comparisons  are
calculated, i and j = indices of any two different values. PV improves upon CV because it is not
mean-dependent and it is less sensitive to rare events [41] (Figure 2B, Table 2).

Consecutive disparity index (CDI)

The consecutive  disparity  index (CDI)  was developed to improve PV by accounting  for  the
chronological order of measurements in a time series [41]. CDI describes time series variability
through the average rate of change between consecutive values; 

CDI = (1/(n-1)) n-1
i=1 |ln(pi+1/pi)| (5)
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where n = length of time series and pi = value in series at time i [41] (Figure 2C-D, Figure 3D,
Figure 4A-B, Figure 5A-E, Table 2-5). 

Analysis of Physical Activity by Cyclic Status

Every participant’s cyclic status (a label of cyclic describes the presence of a roughly 28-
day temperature rhythm generated by menstrual  cycles)  was determined through methods
described  in  “Variability  of  temperature  measurements  recorded  by  a  wearable  device  by
biological  sex”  [15].  Briefly,  autocorrelation profiles  were generated from nightly maximum
temperature  recordings  (not  shown).  Only  cyclic  individuals’  temperature  trend  deviation
autocorrelation signals show wave-like structure. Profiles were classified as cyclic or acyclic by
hierarchical  clustering of  pairwise distances between signals  (pairwise distances calculated
with dynamic time warping)(not shown). Hierarchical clustering classified 193 females in this
cohort as acyclic, 105 females as cyclic, and all but one male as acyclic. The temperature trend
deviation autocorrelation signal for the cyclic classified male individual did not show a wave-
like structure and the male was manually reclassified as acyclic. 102 out of the 105 females
classified as cyclic were between the ages of 20 and 49 and 3 were between 50 and 59. 48 of
the 193 females that were classified as acyclic were under the age of 50, 27 were under the age
of 40, and 46 between 50 and 59. 

Analysis of physical activity by cyclic status focused on the CDI variability metric and
daily 24-hour MET sum metric. 24-hour MET sums were chosen for analysis to focus on the
overall variability that is due to PA, in contrast to asleep or awake sums that vary with time
spent in the state, as described in the ‘Cohort and MET Data Foundational Analysis’. The CDI
variability metric was chosen due to its accounting for chronological order, as described in the
Variability Metrics of MET Sums section.

The  autocorrelation  and  clustering  techniques  used  to  classify  subjects  as  cyclic  or
acyclic were also used to determine if cyclic people had unique structures in daily 24-hour MET
sums such as a 28-day structure. 

Mean and CDI of 24-hour MET sums were calculated for each individual over all 206
days  present  in  the  data  and  compared  across  cyclic  status  (cyclic  females  vs  all  acyclic
individuals of either sex, Kruskal-Wallis test). CDI of 24-hour MET sums were also compared
across groups of individuals with unique combinations of sex and cyclic status (acyclic male,
cyclic  female,  acyclic  female.  Kruskal-Wallis  test  with  Bonferroni  correction  for  three
comparisons and post-hoc Dunn’s test (Figure 2D).  Cyclic and acyclic females of the same age
were compared to control for the uneven age distributions between the two groups (cyclic
females aged 20-59 vs acyclic  females aged 20-59 and cyclic  females aged 20-49 vs acyclic
females aged 20-49, Kruskal-Wallis test).  The effect of cyclic females on the variability of the
whole female population was calculated using IQR distributions as described in the ‘Statistical
Methods’ section. 

Analysis by Weekend Rhythm in Physical Activity 

Analysis by weekend rhythm in PA focused on the CDI variability metric and daily 24-
hour MET sum metric. 24-hour MET sums were chosen for analysis to focus on the overall
variability that is due to PA, in contrast to asleep or awake sums that vary with time spent in
the state, as described in the ‘Cohort and MET Data Foundational Analysis’ methods section.
The  CDI  variability  metric  was  chosen  due  to  its  accounting  for  chronological  order,  as
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described in the ‘Variability Metrics of MET Sums’ section.
To determine if PA rhythms existed on a weekly timescale, we examined a hierarchically

clustered heatmap (seaborn Python library, seaborn.clustermap, version 0.12.2)[36]) of unfilled
and  intraindividual z-scored 24-hour MET sum data (not shown). Hierarchical  clustering of
unfilled (non-imputed) data ensured that clustered structures were not artifacts of data filling
(e.g., the median week imputation in the phase dependent filling method may introduce weekly
rhythms), and z-scoring highlighted groups with similar patterns of change regardless of their
baseline PA.  Hierarchical clustering was performed on four consecutive months of data. The
same four months were chosen for every individual to avoid days with larger proportions of
missing data  at  the  beginning and end of  the  study period. We observed two groups with
different  weekly  PA rhythms on the  heatmap:  one group with high 24-hour MET sums on
weekends relative to themselves and one group with low 24-hour MET sums on weekends
relative to themselves. These rhythms were defined as weekend rhythms, where the group with
relatively high 24-hour MET sums on weekends was further identified as the weekend high PA
rhythm group, and the second group was identified as the weekend low PA rhythm group. 

Convinced  that  weekend  rhythms  were  not  artifacts  of  data  filling, we  performed
agglomerative  clustering  on  filled  MET  data  (filling  methods  described  in  ‘Data  filling’) to
identify individuals with weekend high and weekend low PA rhythms. Agglomerative clustering
was  performed  on  four  consecutive  months  (the  same  months  used  in  the  hierarchical
clustering) of the filled and intraindividual z-scored 24-hour MET sum data using the  scikit-
learn Python  package  (sklearn.cluster.AgglomerativeClustering,  version  1.1.3)[42].  Clustering
into five groups (Figure 3A) allowed for the recovery of both the weekend high PA rhythm
group (Figure 3B) and the weekend low PA rhythm group (Figure 3C), herein referred to as the
weekend high cluster and the weekend low cluster. 

To confirm the presence of the weekend rhythms observed on the heatmap (Figure 3A-C
top), we calculated the average 24-hour MET sum for each day in the consecutive four months
across all participants (Figure 3A bottom), across only participants in the weekend high cluster
(Figure  3B  bottom),  and  across  only  participants  in  the  weekend  low  cluster  (Figure  3C
bottom). These averages were visualized as a line plot with the mean across all days in that
group layered on top (Figure 3A-C bottom). 

To assess the differences between people with different weekend rhythms and without
weekend rhythms (patternless), mean and CDI of 24-hour MET sums were calculated for each
individual over the four consecutive months used to cluster the individuals by PA rhythm. The
means were compared across weekend high, weekend low, and patternless clusters (Kruskal-
Wallis test, Bonferroni correction for three comparisons, and post-hoc Dunn’s test) while the
CDI was only compared across weekend rhythm (the aggregated group of individuals  with
either weekend high or weekend low PA rhythm) and patternless clusters (Kruskal-Wallis test
between two groups). CDI was only compared across the presence or absence of a weekend
rhythm because the direction of change in 24-hour MET sums on the weekend does not affect
the CDI. 

CDI of 24-hour MET sums was also compared across groups of individuals with unique
combinations  of  sex  and  PA  rhythm  (weekend  pattern  male,  weekend  pattern  female,
patternless  male,  and  patternless  female;  Kruskal-Wallis  test,  Bonferroni  correction  for  six
comparisons,  and  post-hoc Dunn’s  test,  Figure  3D).  The  effect  of  weekend rhythms on the
variability of the whole male and female population was calculated using IQR distributions as
described in the ‘Statistical Methods’ section. 
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Analysis of Age

Analysis of age focused on the CDI variability metric and daily 24-hour MET sum metric.
24-hour MET sums were chosen for analysis to focus on the overall variability that is due to PA,
in contrast to asleep or awake sums that vary with time spent in the state, as described in the
‘Cohort and MET Data Foundational Analysis’ methods section. The CDI variability metric was
chosen due to its accounting for chronological order, as described in the ‘Variability Metrics of
MET Sums’ section.

Mean and CDI of 24-hour MET sums were calculated for each individual over all 206
days and compared across age categories (Kruskal-Wallis  test,  Bonferroni correction for 15
comparisons, and post-hoc Dunn’s test, Table 3). CDI of 24-hour MET sums were also compared
across sex groups in the same age category (Kruskal-Wallis test, Bonferroni correction for six
comparisons(six age groups), and post-hoc Dunn’s test, Figure 4A) and across age categories
within the same sex group (Kruskal-Wallis test, Bonferroni correction for 15 comparisons, and
post-hoc  Dunn’s  test,  Figure  4B  and  Table  4-5).  A  boxenplot  (seaborn  Python  library,
seaborn.boxenplot, version 0.12.2)[36], or letter-value plot, was used to visually compare males
and females within age groups (Figure 4A). A boxenplot is similar to a boxplot, but represents
the whiskers as a variable number of quantiles. If quantiles are sufficiently unique, meaning
that they do not include values from other quantiles, they are represented as a box. This leaves
5-8 outliers on each side. 

The effect of each age group on the variability of the whole male or female population
was calculated using IQR distributions as described in the ‘Statistical Methods’ section (Table
6).

Generalized  Additive  Model  (GAM)  of  Those  Features  Found to  Have
Significant Impact on CDI of 24-Hour MET Sums Across Individuals: Sex,
Age, and Weekend Rhythm

Previous studies  have utilized generalized additive  models  (GAMs) to  predict  health
outcomes using sex and/or age as features [43,44]. In this study, a GAM was used to rank the
effect of variables on CDI of 24-hour MET sums and detect groups with outlier intra indivdiual
variability (Figure 5A-E). A generalized additive model was built in Python using the package
pyGAM (pygam.LinearGAM, version 0.9.1)[45]. 

Three initial models were tested: a model with an identity link and a factor term for all
variables analyzed in this paper (sex, age, weekend rhythm, and cyclic status), all variables and
all two-way interactions (sex-age, age-weekend rhythm, etc.), and all variables with all two-way
and all  three-way interactions (sex-age-cyclic status,  etc.).  Model performance was assessed
using  the  likelihood  ratio  pseudo-R-squared  metric  which  represents  the  proportional
reduction in the deviance and was shown as a percent for this analysis. The final model does
not include cyclic status as its effects were not significant (see Results), thus factor terms were
fit to sex, age, and weekend rhythm categories (Sex: female, male. Age: 20-29, 30-39, 40-49, 50-
59,  60-69,  70-79.  Weekend Rhythm (WR):  weekend rhythm, patternless,  Figure 5A-C).  This
resulted in the following GAM structure:

G(E(CDI)) = β0 + fsex(sex) + fWR(WR) + fage(age) (6)

where g is  an identity link function and β0  is  the intercept of the model.  Individual feature
importance was determined by the magnitude of the coefficients in each level of the factor
terms and by the change in null deviance when each feature was left out.
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Results 

Cohort and MET Data Foundational Analysis

As an initial comparison of MET between sexes, we visually assessed minute-level MET
value time series and distributions for two representative individuals (Figure 1A, Figure 1B).
We observed variation in MET values between awake and asleep states with increased MET
during  awake  time  periods,  as  expected  (Figure  1A  and  Figure  1B,  left).  Finding  that  the
distribution of MET values appeared highly dependent on asleep or awake state (Figure 1A and
Figure 1B right), further comparisons used daily aggregated MET values separated into sums
over either 24 hours, only awake time periods, or only asleep time periods. Female and male
distributions of mean 24-hour, awake, and asleep daily MET sums over the 206 days overall
were  not  significantly  different  (Table  1,  Figure  1C,  Figure  1D).  However,  we  observed  an
apparent increase in the male mean of 24-hour MET sums at the upper extreme (Figure 1C).
Consistent with this observation, a comparison of individuals’ mean of 24-hour MET (Figure
1C,  right)  revealed  that  the  60  males  with  the  largest  average  24-hour  MET  sum  had  a
significantly higher average than the top 60 females (Kruskal-Wallis, H=10.25, P=.001, Modified
Cohen’s d (dm) = 0.34). We also observed differences between male and female intraindividual
variability:  the standard deviation for individual  males was significantly larger than that  of
individual females for both the standard deviation of awake and 24-hour MET sums (Table 1,
Figure 1E). 
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Figure 1. Longitudinal plot of a representative three-week interval of minute-level MET data
(left) from (A) one female (blue) and (B) one male (red) with the histogram of the MET values
for  each  separated  by  awake  (light)  and  asleep  (dark)  values  (right).  MET  values  were
examined at minute-level resolution. Histograms show the percent time (percent time is shown
on a log scale and referenced in the figure as ‘Proportion of total time’) spent in 37 bins of MET
values while awake or asleep. MET values range from 0.9 to 16.1 and each bin is 0.4 METs in
size. C) Plot of all individuals’ (n=596) mean (dot) and standard deviation (vertical line) of 24-
hour daily MET sums, sorted by mean. The dashed line separates the 60 individuals in each sex
with  the  largest  means  from  the  rest  of  the  population.  The  top  60  were  subsequently
compared across sex (Kruskal-Wallis test). D) Violin plots of male and female individual means
and E) standard deviations for 24-hour MET sums, awake time state MET sums, and asleep
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time state MET sums (Kruskal-Wallis test, Bonferroni corrected significance threshold for three
comparisons: P=0.02).

Table 1. Mean and Standard Deviation Statistics by Time State: Kruskal-Wallis test across sex
for  mean  and  standard  deviation  of  each  time  state.  (Bonferroni  corrected  significance
threshold for three comparisons: P=0.02).
Statistic Kruskal-Wallis Test Across Sex
 P-value H statistic Sex with Larger Median

MET Sum
Mean

24-hour .55 0.36 Male
Awake .53 0.40 Male
Asleep .31 1.01 Female

Standard Deviation
24-hour <.001 38.54 Male
Awake <.001 11.60 Male
Asleep .85 0.03 Female

Variability Metrics of MET Sums 

Four intraindividual variability metrics were measured: standard deviation, coefficient
of  variation,  proportional  variability  index,  and  consecutive  disparity  index.  The  most
appropriate metric of variability for our analyses was the consecutive disparity index because
of  its  accounting for chronological  order  and non-dependence on the  mean for  calculation.
Other metrics were included as controls to validate the statistical findings from consecutive
disparity index analyses. Further analyses used only CDI as a variability metric.

CV  and  PV  of  male  individuals  were  significantly  larger  than female  individuals  for
awake and 24-hour MET sums (Figure 2A-B, Table 2). 24-hour MET sum CDI was significantly
larger for males than females (Figure 2C, Table 2, Modified Cohen’s d (dm) = 0.35). In all three of
these metrics, asleep MET sum intraindividual variability was not significantly different across
sexes (Figure 1D, Table 1, Figure 2A-C, Table 2).

Analysis of Physical Activity by Cyclic Status

Neither 28-day (or near 28-day) temporal structures nor any unique temporal structure
in  daily  24-hour  MET sums  were  identified  in  cyclic  people.  Cyclic  females  and  all  acyclic
subjects  (male  or  female)  did  not  have  significantly  different  mean  24-hour  MET  sums
(Kruskal-Wallis, H=0.46, P=.50, data not shown) or significantly different CDI of 24-hour MET
sums (Kruskal-Wallis H=1.03,  P=.31, Figure 2D).  However,  we found a significant difference
between male,  cyclic  female,  and acyclic  female CDI  of  24-hour MET sums (Kruskal-Wallis,
H=32.36,  P<.001,  Figure  2D).  A  Dunn’s  test  showed that  females  were less  variable  within
individual than males, regardless of cyclic status (males vs.  cyclic females:  P=.006, Modified

https://preprints.jmir.org/preprint/66231 [unpublished, peer-reviewed preprint]



JMIR Preprints Varner et al

Cohen’s d (dm) = 0.27. males vs. acyclic females: P<.001, dm = 0.41), and that cyclic females and
acyclic females were not significantly different (P=.09). Cyclic females and acyclic females of the
same age were also compared to confirm that the uneven age distribution between the two
groups did not contribute to there being no statistical difference between the groups (Kruskal-
Wallis, cyclic females age 20-59 (n=105) vs acyclic females age 20-59 (n=94): H=2.30,  P=.13.
Cyclic females aged 20-49 (n=102) vs acyclic females aged 20-49 (n=48): H=0.53,  P=.47).  We
then  compared  the  population  variability  of  the  whole  female  population  and  the  female
population  excluding  cyclic  females,  as  described  in  the  methods  in  the  ‘Effect  of
subpopulations’ subsection of the ‘Statistical Methods’ section. Removing cyclic females from
the female population did not significantly reduce the whole female population variability  24-
hour MET sums (Kruskal-Wallis, H=0.12, P=.73).

Figure 2. Violin plots of female (blue) and male (red) distribution of A) coefficient of variation
(CV), B) proportional variability index (PV), and C) consecutive disparity index (CDI) for 24-
hour MET sums, awake time state MET sums, and asleep time state MET sums. (Kruskal-Wallis,
Bonferroni  corrected  significance  threshold  for  three  comparisons:  P=0.02),  and  D)  kernel
density estimate plots of all female (blue), all  male (red), acyclic female (teal),  cyclic female
(blue-green),  and  all  acyclic  individuals  of  either  sex  (purple).  Group  median  CDI:  dashed
vertical lines. 

Table  2.  Variability  Metrics  by  Time  State:  Kruskal-Wallis  test  across  sex  for  coefficient  of
variation (CV),  proportional  variability index (PV),  and consecutive disparity index (CDI) of
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each time state. (Bonferroni corrected significance threshold for three comparisons: P=0.02).
Statistic Kruskal-Wallis Test Across Sex
 P-value H statistic Sex with Larger Median

MET Sum
CV

24-hour <.001 43.70 Male
Awake .002 9.36 Male
Asleep .68 0.17 Male

PV
24-hour <.001 37.90 Male
Awake <.001 10.97 Male
Asleep .08 3.12 Male

CDI
24-hour <.001 29.51 Male
Awake .34 0.90 Male
Asleep .33 0.96 Male

Analysis by Weekend Rhythm in Physical Activity 

Agglomerative clustering of four months of data per individual across the whole cohort
revealed clusters of individuals sharing prominent PA rhythms on a weekly timescale (Figure
3A).  Two  clusters  of  individuals  with  weekend  rhythms  were  identified:  a  ‘weekend  high’
cluster (Labeled dark green in Figure 3A and Figure 3B) and a ‘weekend low’ cluster (Labeled
purple in Figure 3A and Figure 3C). The three clusters without weekend rhythms are referred
to as ‘patternless’ clusters (Labeled with orange, pink, and light green in Figure 3A). 

Significant differences in the means of 24-hour MET sums existed between individuals
in the weekend high cluster, weekend low cluster, and the patternless clusters (Kruskal-Wallis:
H=9.18,  P=.01,  Bonferroni  corrected  significance  threshold:  P=.02,  data  not  shown).  The
weekend high cluster had significantly larger mean 24-hour MET sums than the weekend low
cluster  and  the  patternless  clusters  (Dunn’s  test:  weekend  high  vs.  weekend  low:  P=.007.
weekend high vs. patternless: P=.01). Modified Cohen’s d effect sizes (dm) between significantly
different  groups  were  0.41  (weekend  high  vs.  weekend  low)  and  0.22  (weekend  high  vs.
patternless).

Next, we grouped the individuals with any weekend rhythm (weekend high or weekend
low)  to  examine  intraindividual  variability.  The  cluster  of  individuals  with  either  weekend
rhythm had significantly larger CDI of 24-hour MET sums than individuals in the patternless
clusters (Kruskal-Wallis, H=10.13, P=.001, dm = 0.20, data not shown). The modified Cohen’s d
(dm)  between  male  and  female  CDI  of  24-hour  MET  sums  was  0.35,  suggesting  that  sex
explained more intraindividual variability than PA rhythms on the weekly timescale. 

We  found  significant  effects  of  sex  and  weekend  rhythm on  24-hour  MET  sum  CDI
(Kruskal-Wallis, Bonferroni corrected significance threshold:  P=.008, H=34.60,  P<.001, Figure
3D). Males have larger CDI of 24-hour MET sums than females in the same cluster (Dunn’s test:
patternless cluster: P<.001, dm = 0.32. weekend rhythm cluster: P=.003, dm = 0.51). Additionally,
males  in  the  weekend  rhythm  cluster  had  significantly  larger  24-hour  MET  sum  CDI  than
females from the patternless clusters (Dunn’s test, P<.001, dm = 0.49); however, females in the
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weekend rhythm cluster did not have significantly larger 24-hour MET sum CDI than males in
the patternless clusters (Dunn’s test,  P=.24). We found no significant effect between clusters
within sex on 24-hour sum CDI: males in the weekend rhythm cluster did not differ from males
in the patternless clusters (Dunn’s test, P=.02), nor did females in the weekend rhythm cluster
differ from females in the patternless clusters (Dunn’s test, P=.06). 

We  compared  the  variability  of  the  whole  male  and  female  populations  to  the
populations excluding individuals with weekend rhythms using the strategy described in the
methods section in the ‘Effect of subpopulations’ subsection of the ‘Statistical Methods’ section.
Excluding individuals with weekend rhythms did not reduce the population variability of 24-
hour MET sums  of either  the whole male or female population (Kruskal-Wallis,  Bonferroni
corrected  significance  threshold:  P=.025,  all  females  vs.  females  without  weekend  rhythm
clusters: H=2.62, P=.11. all males vs. males without weekend rhythm clusters: H=4.46, P=.03). 
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Figure 3. A) Heatmap of relative activity for every individual across four consecutive months.
Relative  activity  was  defined  as  arctan(2*intraindividual z-score(daily  24-hour  MET  sum)).
Relative activity values above 2 and below -1.5 are colored with the lightest and darkest values

https://preprints.jmir.org/preprint/66231 [unpublished, peer-reviewed preprint]



JMIR Preprints Varner et al

respectively.  Individuals  are  sorted  by  agglomerative  cluster  number  and  clusters  are
demarcated by the colors in the bar to the left of the heatmap. The line and layered barplot
below each heatmap  show the  daily  mean 24-hour  MET sum across  all  individuals  in  the
connected heatmap (solid black line), the mean 24-hour MET sum across all days in the four-
month period (dashed black line), and the daily 24-hour MET sum mean of the males (red) and
females  (blue)  where  the  sex  with  the  lower  mean  for  each  day  was  layered  on  top.
Magnification of the dark green cluster: weekend high heatmap (B); and dark purple cluster:
weekend low heatmap (C). Heatmap rows, representing one individual each, are all of equal
size so that the height of the heatmap is representative of the number of people in the cluster.
Individuals are labeled and sorted by sex (blue box on the left of the heatmap for female, red for
male).  D)  Kernel  density  estimate  plot  of  consecutive  disparity  index  calculated  from  four
consecutive months for the female and male whole population, weekend cluster population,
and other clusters. Vertical dashed lines represent the population median CDI.

Analysis of Age

We  found  significant  differences  in  mean  24-hour  MET  sums  across  age  groups
(Kruskal-Wallis:  H=24.30,  P=2x10-4,  Bonferroni  corrected  significance  threshold  for  15
comparisons: P=3x10-3, data not shown). Individuals aged 70-79 had significantly smaller mean
24-hour daily MET sums than individuals aged 30-39 and 50-59 (Dunn’s test: 70-79 vs. 30-39:
P=1x10-5,  dm = 0.54.  70-79 vs.  50-59:  P=5x10-4,  dm = 0.39),  and individuals  aged 60-69 had
significantly smaller mean 24-hour daily MET sums than individuals aged 30-39 (Dunn’s test:
60-69 vs. 30-39: P=3x10-3, dm = 0.28). Other comparisons of mean 24-hour MET sums between
age groups were not statistically significant (data not shown).

Differences  in  CDI  of  24-hour  MET sums  existed  across  age  groups  (Kruskal-Wallis,
H=40.55,  P=1x10-7, Bonferroni corrected significance threshold for 15 comparisons:  P=3x10-3,
Table  3).  Individuals  aged  70-79  had  significantly  smaller  CDI  of  24-hour  MET  sums  than
individuals  aged  20-29,  30-39,  40-49,  and  50-59  (Table  3).  Individuals  aged  60-69  had
significantly smaller CDI of 24-hour MET sums than individuals aged 30-39 and 50-59 (Table
3). The modified Cohen’s  d  (dm) between the groups that were significantly different ranged
from 0.36 to 0.56, suggesting that age explained more intraindividual variability than sex (dm =
0.35) and weekly rhythm (dm = 0.20). 

Having found a significant effect of  sex and also of  age bin,  we carried out pairwise
comparisons of sex within each age bin and found that males in the 30-39 group and the 40-49
group had significantly higher 24-hour MET sum CDI than females in the same age groups
(Kruskal-Wallis, Bonferroni corrected significance threshold for six comparisons:  P=.008: 30-
39 M vs. 30-39 F: H=8.62,  P=.003,  dm = 0.37. 40-49 M vs. 40-49 F: H=8.64,  P=.003, dm = 0.33.
Figure 4A). We further note that while the remaining comparisons were not significant, the
trend in every age group was toward the same direction of difference, with males having higher
median  CDI  at  all  ages  (Kruskal-Wallis,  Bonferroni  corrected  significance  threshold  for  six
comparisons: P=.008: 20-29 M vs. 20-29 F: H=0.96, P=.33. 50-59 M vs. 50-59 F: H=0.78, P=.38.
60-69 M vs. 60-69 F: H=6.58, P=.01. 70-79 M vs. 70-79 F: H=6.38, P=.01. Figure 4A). 

Females aged 70-79 were significantly less variable than females aged 20-29, 30-39, and
50-59; females aged 60-69 were significantly less variable than females aged 50-59 (Figure 4B,
Table 4).  Modified Cohen’s  d effect  sizes for these differences were between 0.50 and 0.69
(Table 4). Males aged 70-79 were significantly less variable than males aged 30-39 with a 0.40
modified Cohen’s d effect size (Figure 4B, Table 5). 

We compared the variability of the whole male and female populations excluding each
single  age  group  using  the  strategy  described  in  the  methods  section  in  the  ‘Effects  of
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subpopulations’ subsection of the ‘Statistical Methods’ section. The IQR distributions composed
of the daily IQRs of population 24-hour MET sums were not significantly different between: a)
the  whole  population  and  b)  the  population  without  any  single  age  group,  except  in  one
comparison  (Table  6).  The  whole  female  population  and  the  female  population  without
individuals aged 60-69 have significantly different IQRs of 24-hour MET sums, such that the
female population variability was increased by the presence of females aged 60-69 (Table 6,
dm=0.18).  Using Lehr’s  rule,  we calculated the  effect  of  the increased population variability
caused by females aged 60-69 on the approximate required sample size to detect a statistically
significant difference. We found that to detect a difference of 40 (approximately the difference
in 24-hour MET sums resulting from a 20-minute walk), the exclusion of females aged 60-69
results in a sample size reduction from 1088 to 1047 (3.8% reduction). For a difference of 100
(approximately the difference in 24-hour MET sums resulting from 20-minutes of moderate
intensity of activity), the exclusion results in a sample size reduction from 174 to 167 (4.0%
reduction),  and for a difference of 180 (approximately the difference in 24-hour MET sums
resulting from 20-minutes of high intensity of activity), the exclusion results in a sample size
reduction from 54 to 52 (3.7% reduction).

Table  3.  Age Bin Statistics.  Diagonal  (dark-shaded cells):  The median consecutive  disparity
index  (CDI)  of  each  age  bin.  Below/left  of  diagonal:  P-value  of  the  post-hoc  Dunn’s  test
comparing each age group, significant comparisons are lightly shaded. Above/right of diagonal:
lightly shaded cells  show the modified Cohen’s  d effect  sizes of  the comparisons that  were
significantly  different.  (Kruskal-Wallis,  Bonferroni  corrected  significance  threshold  for  15
comparisons: P=3x10-3)

20-29 30-39 40-49 50-59 60-69 70-79

20-29 0.082 0.38

30-39 .38 0.087 0.47 0.56

40-49 .68 .20 0.081 0.36

50-59 .64 .67 .38 0.089 0.43 0.51

60-69 5x10-3 2x10-4 .02 1x10-3 0.07

70-79 4x10-5 5x10-7 2x10-4 4x10-6 .18 0.065
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Figure 4.  A)  Boxenplot  of  consecutive disparity indices for each sex-age category (Kruskal-
Wallis, Bonferroni corrected significance threshold for six comparisons: P=.008). B) Female and
male kernel density estimate plots of consecutive disparity index (CDI) in each age bin. Dashed
lines represent the median CDI of the sex-age population. 

Table 4 and Table 5. Female (Blue, Top) and Male (Red, Bottom) Age Bin Statistics. Diagonal
(dark-shaded cells):  The median consecutive  disparity  index of  each age  bin.  Below/left  of
diagonal:  p-value  of  the  post-hoc  Dunn’s  test  comparing  each  age  group,  significant
comparisons are lightly shaded. Above/right of diagonal: lightly shaded cells show the modified
Cohen’s  d effect  sizes  of  the  comparisons  that  were  significantly  different.  (Kruskal-Wallis,
Bonferroni corrected significance threshold for 30 comparisons: P=1.7x10-3)

20-29 30-39 40-49 50-59 60-69 70-79

20-29 0.082 0.60
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30-39 .88 0.080 0.64

40-49 .17 .22 0.074

50-59 .77 .66 .10 0.084 0.50 0.69

60-69 3x10-3 4x10-3 .10 1x10-3 0.068

70-79 3x10-5 5x10-5 5x10-3 7x10-6 .22 0.062

20-29 30-39 40-49 50-59 60-69 70-79

20-29 0.087

30-39 .18 0.096 0.40

40-49 .56 .45 0.091

50-59 .72 .32 .81 0.100

60-69 .29 .02 .10 .16 0.081

70-79 .05 9x10-4 .01 .02 .36 0.076

Table  6.  Kruskal-Wallis  Test  of  daily  IQRs  (n=206)  between  the  whole  female  or  male
population and the female or male whole population with one age group removed. (Bonferroni
corrected significance threshold for 12 comparisons: P=.004)
Sex Kruskal-Wallis Test 
 P-value H statistic

Removed Age Group
Male

20-29 .57 0.32
30-39 .57 0.33
40-49 .06 3.57
50-59 .75 0.10
60-69 .03 4.75
70-79 .007 7.40

Female
20-29 .68 0.17
30-39 .20 1.65
40-49 .03 4.81
50-59 .09 2.89
60-69 <.001 11.11
70-79 .007 7.17

Generalized  Additive  Model  (GAM)  of  Those  Features  Found to  Have
Significant Impact on CDI of 24-Hour MET Sums Across Individuals: Sex,
Age, and Weekend Rhythm

A GAM was used to summarize the contributions of sex, age, cyclic status, and weekend
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rhythm on CDI of 24-hour MET sums across individuals. Three initial models were tested to
find the best model for explaining population variability in CDI while retaining interpretability:
1) a model with an identity link and a factor term for all variables analyzed in this paper (sex,
age, weekend rhythm, and cyclic status); 2) all variables and all two-way interactions (e.g. sex-
age, age-weekend rhythm, etc.); 3) all variables with all two-way and all three-way interactions
(e.g.  sex-age-cyclic status, etc.). The first model explained 11.5% of the null deviance, but the
cyclic  status  term  was  not  significantly  different  from  zero  (P=.17).   The  last  two  models
explained 1.6% and 2.8% more of the null deviance than the first model, where again cyclic
status was not significant (second model P=.63, third model P=.84). These analyses support our
finding that acyclic and cyclic individuals did not have significantly different CDI.  Given the
marginal increase in null deviance explained for the substantial increase in model complexity
(7  and  11  additional  relational  features,  respectively)  and  the  increased  difficulty  of
interpreting the models with multiple interaction terms (4 terms in the first vs 7 & 11 in the
second  and  third,  respectively),  the  first  model  was  chosen  for  further  interrogation.  To
construct the final model, the cyclic status variable was removed from the first model since the
term  was  not  significantly  different  from  zero,  leaving  the  final  variables  as  sex,  age,  and
weekend rhythm. 

Unique  combinations  of  the  categories (physiological  phenotypes) across  the  final
variables resulted in 24 phenotype groups (e.g., Female, 20-29, weekend rhythm) for which the
model  predicted  a  CDI  value.  Each  of  the  variables  had  a  significant  effect  on  the  model
prediction (sex: P<.001, weekend rhythm: P<.01, age: P<.001). The null deviance explained by
the final model decreased by 4.9% by the exclusion of sex as a feature, by 4.7% by the exclusion
of age as a feature, and by 0.92% by the exclusion of weekend rhythm as a feature, indicating
that sex and age are the most important features in this model for predicting CDI. Coefficient
magnitudes indicated that sex and specific age bins had the greatest effect on CDI out of these
categories:  sex  (Figure  5A)  had  an  overall  effect  of  ±0.0091  (decreased  for  females  and
increased for males), weekend rhythm (Figure 5B) had an overall effect of ±0.0043 (decreased
for patternless and increased for weekend rhythms), and age  bin (Figure 5C) had an overall
effect of 0.0093 to -0.015 (20-29: 0.0055, 30-39: 0.0093, 40-49: 0.0011, 50-59: 0.0075, 60-69: -
0.0082, 70-79: -0.015). However, the overall deviance explained by the final model was 11.3%,
indicating a low proportion of null deviance explained by the model. This is consistent with our
modified Cohen’s d analyses that found the difference in median CDI between categories to be
smaller  than  the  size  of  the  interquartile  ranges  (IQRs)  of  the  categories themselves  (see
sections on Sex, Weekly Rhythms, and Age, above; modified Cohen’s  d (dm) = 0.35, 0.20, and
0.36-0.56  respectively).  Together,  both  of  these  analyses  indicated  that  even  timescales  of
change  that  were  significant  sources  of  variability  in  CDI  were  not  substantial  sources  of
variability that would likely weaken statistical power. GAM analysis added that the intersection
of sex at specific age  bins (30-39, 50-59, 60-69, and 70-79) affected the GAM prediction the
most, but further confirmed that no such category is in itself a substantial source of variability
in the population. Model predictions did not align with unique values for each phenotype group
and there was significant overlap between groups in CDI range (Figure 5D-E). 
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Figure  5.  GAM  fitted  factor  functions  for  sex  (A),  weekend  rhythm  (B),  and  age  (C)  with
confidence intervals. D) Boxplot of consecutive disparity index of 24-hour MET sums for each
unique  phenotype  group  in  order  of  the  model  prediction  (green line)  for  that  phenotype
group. Age-sex categories are colored as they were in Figure 4A and hatching indicates the
presence  of  a  weekend  rhythm  in  individuals  in  the  labeled  group  (P  =  patternless,  W  =
weekend  rhythm).  E)  Stacked  histogram  (ordered  for  visual  clarity)  of  the  number  of
individuals in CDI bins labeled by phenotype group, highlighting the overlap of each group in
most bins.

Discussion 

Principal Results 

In this work, we found evidence to reject the hypothesis that it is necessary to exclude
women as research subjects when assessing PA-related behaviors. Sex and cyclic status were
found to represent different populations, and neither sex nor  menstrual cycles substantially
increased the intraindividual variability of PA. Rather, we found that females have significantly
less  intraindividual  variability  than males,  regardless  of  their  cyclic  status.  This  study also
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demonstrates  the  exclusion  of  either  sex  is  unwarranted,  as  the  overall  difference  in
intraindividual PA variability was small. However, this work did reinforce the utility of sex as a
biological  variable (SABV),  as  we found differences  by sex in  the contributions of  different
timescales (weekends and age) to the patterns of change in PA over time. 

Males and females showed no significant differences between mean 24-hour MET sums,
but the 60 most active males were significantly more active than the 60 most active females.
The standard deviation, coefficient of variation (CV), proportional variability index (PV), and
consecutive disparity index (CDI) of 24-hour MET sums were all significantly different by sex.
Because CDI captures local changes instead of only global structure, we deemed CDI the best
indicator of  continuous intraindividual  variability  for time series data.  Cyclic  status had no
effect on CDI of 24-hour MET sums and no temporal structures on the timescales of menstrual
cycles  were  found  in  cyclic  people  (i.e.  the  roughly  28-day  rhythms  in  these  individuals’
temperature data[15] were not reflected in their PA). 

We did find that some people in the dataset had temporal structure on the timescales of
weeks. The people with weekend rhythms were found to have higher intraindividual variability
(CDI of 24-hour MET sums) than people without weekend rhythms (patternless), regardless of
sex.  However,  within sex,  people with weekend rhythms did not have significantly different
intraindividual  variability  than  those  without  weekend  rhythms,  nor  did  their  inclusion
increase the population variability of the whole male or female populations. Males were more
intraindividually variable than females regardless of weekend rhythm. Without SABV analysis,
we  may  have  concluded  that  CDI  was  significantly  different  between individuals  with  and
without weekend patterns when the actual cause of this deviation appears to be due to the fact
that male PA is more variable within individuals than female PA.

We  also  found  that  sex  differences  existed  in  the  presence  of  weekend  rhythms.
Interestingly, those with weekend effects were more likely to be male, though both sexes were
represented in this category (85 females and 97 males had weekend rhythms). This may be
because weekends play a large role in modulating behavior. For example, work schedules may
inhibit PA during weekdays, leading some individuals to make up their PA debt on weekends.
Others may have active work schedules, and seek to rest and recuperate on weekends. One
study found that individuals who were more active on weekdays than on weekends had lower
education and were more likely to work manual occupations than those who were consistently
inactive [46]. A higher group membership of males (55 females and 78 males) in the weekend
high group may also  support  the  finding that  females  have higher  rates of  inactivity  [3]  if
increased activity on the weekend is due to participation in exercise.

Age did not have a consistent effect on intraindividual variability. When the data was
sex-disaggregated, females aged 70-79 and 60-69 were less variable than a few of the younger
age bins, but only one age bin was different between males: males 70-79 were less variable
than males aged 30-39. This decrease in intraindividual variability in the oldest age groups we
analyzed is likely caused by increased sedentary behavior with increased age [47]. Additionally,
males in the 40-49 and 30-39 age bins were more intraindividually variable than females in the
same age groups. This, again, is in contrast to the results when all individuals of both sexes
were considered in statistical  tests.  If  the results were not sex-disaggregated,  we may have
concluded  that  male  intraindividual  variability  across  age  bins  looks  similar  to  female
intraindividual variability when it evidently does not. The lack of difference across age bins in
males appears to be caused by increased population variability of CDI of 24-hour MET sums
within each age bin when compared to females. We note that females aged 60-69 were the only
group to significantly increase the population variability of the whole female population. We
used  this  group  to  test  the  hypothesis  that  excluding  minority  groups  that  significantly
increased whole population variability would meaningfully improve statistical power for the
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included groups. We found a change in sample size of less than 5% for computed comparisons.
We argue that the benefits from reducing, for example, a 200 person study to a 192 person
study is less than the value of including a whole other group so that findings apply broadly to
more people.

The effects of weekend rhythms and age,  along with the lack of effects due to cyclic
status, on intraindividual variability all suggest that sex alone is not an effective proxy for the
presence  of  temporal  structure  or  the  intraindividual  variability  that  may  affect  statistical
analysis. In our final analysis, we employed a multivariate (GAM) model that determined that
while sex, weekend rhythm, and age have significant effects on  intraindividual PA variability,
only 11.3% of the population variability in CDI of 24-hour MET sums can be explained by these
phenotypes. The analysis showed that age and sex had similar effects on intraindividual PA
variability and that weekend rhythm had a much smaller effect comparatively. Cyclic status did
not have a significant effect (consistent even in the more complex models), and in fact had less
effect than any other timescale studied. The analysis also highlights the potential usefulness of
intersectional phenotypes in showing that they provide more information about an individual
than single phenotypes. Indeed, digital twinning is emerging as a computational approach for
providing precision insights into health by grouping “similar” individuals  (similar based on
many potential features of their data) and then identifying signs or treatments specific to that
group, as opposed to being limited to more classical demographics like sex or ethnicity alone
[48,49].  As  these  approaches  mature,  timescales  of  change  like  menstrual  cycle,  weekend
patterns, and circadian rhythms might prove to be useful features by which to define similarity.
Even when the intraindividual variability is roughly equal across such groups (we found only
11.3% of  intraindividual  variability  can be  accounted for  by  the  various  timescales  in  this
work) the behaviors or needs of groups with different dynamics may still differ due to differing
physiology.  

Older females with weekend rhythms appear to have the least intraindividual variability
of all subject phenotypes (Figure 5D), perhaps indicating stronger behavioral routines in this
phenotype group. Ironically, older females, who are historically even more understudied than
females  broadly  [50,51],  would  appear  to  have  mitigated  concerns  about  increased
intraindividual variability eroding statistical comparisons more than any other group, including
the most historically overrepresented population of midlife males. This is not an argument that
men should be excluded—no group should be excluded from research, and no groups in our
models  exhibited an overwhelming amount  of  intraindividual variability  that  would reduce
power in statistical comparison. Rather, this highlights that assumptions about who should be
excluded in the interest of minimizing population variability and maximizing statistical power
may have made statistical inference harder rather than easier (and may still be doing so when
numerical examinations of these assumptions are absent in any given field of study). While the
multivariate analysis suggests that sex and age most affect intraindividual variability among the
four variables studied, none of these variables alone, nor their intersection, reliably predicted
intraindividual  variability.  This suggests that  no group is  so different from the others as to
warrant statistical exclusion.

The key assertion is that in the context of PA, which is at present the most commonly
available  longitudinal  physiological  measure  for  humans,  we  found  no  support  for  the
hypothesis that females broadly are more variable than males. 

Limitations 
This study aligns with our previous findings about sex and menstrual cycle impacts on

variability in continuous temperature data [15]. As those analyses and the analyses presented
here stemmed from the same cohort,  it  is  possible that  new cohorts would show different
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distributions,  and  so  additional  studies  would  help  identify  the  stability  and  context  for
variability in different phenotypes and populations. For example, we do not suggest that all
older  females are less variable  than all  young males -  indeed the  least  variable phenotype
across the three characteristics of age, sex, and weekend rhythm had a substantially reduced N
(Figure 5D), and so may well not be reliably representative of the broader population of older
females.  Instead,  we suggest  that  our  longitudinal  analyses  find this  to  be  the  case  in  this
modality (PA), in this data set.

Additionally,  it  is  worth noting that  MET is  not the same as steps,  but is  instead an
adjusted measure of activity, conditioned by the weight of the individual. While MET does not
provide insights into total absolute activity or types of activity, METs change as a function of
intensity of activity and thus provide a means of assessing different timescales of behavioral
change across individuals’ data, as we analyzed here. Although METs have been found to have
systematic inaccuracies in energy expenditure estimates due to their reliance on body weight
for  calculation  [52],  this  does  not  affect  the  relative  change we analyzed in  intraindividual
variability. Furthermore, while the exact formula for the calculation of METs is proprietary to
Oura  Ring and  not  known to  us;  Oura  Ring (Gen 2)  activity  measurements  displayed high
correlation  when  previously  validated  against  multiple  accelerometers  [30].  As  always,  we
encourage further study using different metrics to more fully describe the variability landscape
from as many angles as might be relevant to other applications or fields of research.

Comparison with Prior Work 

This work joins a growing body of analyses that support the inclusion of both sexes in
biomedical research [13,15–20,53–57]. Persistent sex bias in subject selection for biomedical
research in humans and its detrimental impact on women’s healthcare has been thoroughly
described previously [53–56]. The harmful exclusion of women and females as subjects has
received increased attention in the past decade - including specific mention as a problem in the
2024 Presidential State of the Union Address [58]. Public attention to this issue along with the
U.S. [59] and international [60,61] policy changes affecting the inclusion of females has led to
marked improvements in cohort equity [13,62], however, many researchers still fail to include
subjects of both sexes in experiments, and those who do, often fail to perform SABV analyses
[13,16,59]. Researchers’ resistance to including females in both animal and human studies in
biomedical  research  stems  from the  same  concerns  seen  in  sports  and  exercise  medicine:
including  females  will  increase  intraindividual  measurement  variability  due  to  hormone
fluctuations, and thus reduce statistical power [57].  Our results support inclusion of female
subjects,  consistent  with  many other  studies  that  found female  subjects  do not  reduce the
statistical power of experiments due to substantial variability (e.g. [16–20]). Both this work
and our previous work in temperature found that sex does affect variability,  but that cyclic
status  alone  does  not  account  for  the  difference  between males  and  females  [15].  Neither
segregation by sex nor segregation by cyclic status in and of themselves seems to be a useful
control  for  overall  variability  in  these  modalities  [15].  As  a  result,  our  work suggests  that
exclusion for the sake of preserving statistical power is neither necessary nor justified. 

While  this  study is  related  to  sex  bias  in  biomedical  research at  large,  the  findings
presented here are most applicable and comparable to behavioral research (here considered a
subset  of  biomedical  research)  and  epidemiological  research  in  PA  because  the  variability
metric used (consecutive disparity index (CDI) of daily MET sums) approximates the amount of
total  exercise  and  movement  in  a  day  without  consideration  for  types  of  activity  or
physiological processes. 

In regards to epidemiological research in PA, our findings did not reflect the general
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consensus that females are less active than males [3–5]. However, as discussed above, METs
have been found to have systematic inaccuracies in energy expenditure estimates [52], and may
therefore inaccurately measure the amount of PA. Another potential cause for this discrepancy
is that people who use wearables are more likely to be active than those who don’t [63,64].

The effects of menstrual cycles on exercise performance have been studied previously,
and the results are largely conflicting and inconclusive [9,10]. While this work does address PA
variability in people with roughly 28-day temperature cycles, it is unique to these studies in
metric: these studies assess exercise performance metrics such as strength and endurance, and
our analyses examine the intraindividual variability of a daily summary of behavior or physical
activity. This study also does not examine specific stages of the menstrual cycle or exercise
performance metrics, however, the fact that 28-day temporal patterns in 24-hour MET sums do
not exist at least suggests that if changes in exercise performance caused by cycling exist, they
do not significantly affect behavior or total amount of physical activity. 

Instead  of  finding  temporal  structures  on  menstrual  timescales,  we  found  temporal
structures  on  weekly  timescales  confirming  the  findings  from  other  recent  accelerometry
studies  that  found  weekly  rhythms  in  PA  [46,65].  While  this  study  did  not  use  raw
accelerometer data, it expands on previous studies in cohort age diversity [46] and the length
of the study period [46,65]. However, these previous studies have focused on total amounts of
activity rather than the presence of  rhythms and are not directly comparable to this work.
Weekend rhythms are not the main thrust of our work, but these findings may be of interest to
those studying activity patterns

Conclusions 

In  conclusion,  our  findings  support  sex-based  and  age-based  analysis  in  biomedical
research involving PA, while rejecting the exclusion of females, males, weekend rhythm types,
or any other specific intersectional phenotype from biomedical research based on assumptions
of increased intraindividual variability of PA interfering with statistical power. 
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Longitudinal plot of a representative three-week interval of minute-level MET data (left) from (A) one female (blue) and (B)
one male (red) with the histogram of the MET values for each separated by awake (light) and asleep (dark) values (right). MET
values were examined at minute-level resolution. Histograms show the percent time (percent time is shown on a log scale and
referenced in the figure as ‘Proportion of total time’) spent in 37 bins of MET values while awake or asleep. MET values range
from 0.9 to 16.1 and each bin is 0.4 METs in size. C) Plot of all individuals’ (n=596) mean (dot) and standard deviation
(vertical line) of 24-hour daily MET sums, sorted by mean. The dashed line separates the 60 individuals in each sex with the
largest means from the rest of the population. The top 60 were subsequently compared across sex (Kruskal-Wallis test). D)
Violin plots of male and female individual means and E) standard deviations for 24-hour MET sums, awake time state MET
sums, and asleep time state MET sums (Kruskal-Wallis test, Bonferroni corrected significance threshold for three comparisons:
P=0.02).
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Violin plots of female (blue) and male (red) distribution of A) coefficient of variation (CV), B) proportional variability index
(PV), and C) consecutive disparity index (CDI) for 24-hour MET sums, awake time state MET sums, and asleep time state
MET sums. (Kruskal-Wallis, Bonferroni corrected significance threshold for three comparisons: P=0.02), and D) kernel density
estimate plots of all female (blue), all male (red), acyclic female (teal), cyclic female (blue-green), and all acyclic individuals of
either sex (purple). Group median CDI: dashed vertical lines.
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Heatmap of relative activity for every individual across four consecutive months. Relative activity was defined as
arctan(2*intraindividual z-score(daily 24-hour MET sum)). Relative activity values above 2 and below -1.5 are colored with the
lightest and darkest values respectively. Individuals are sorted by agglomerative cluster number and clusters are demarcated by
the colors in the bar to the left of the heatmap. The line and layered barplot below each heatmap show the daily mean 24-hour
MET sum across all individuals in the connected heatmap (solid black line), the mean 24-hour MET sum across all days in the
four-month period (dashed black line), and the daily 24-hour MET sum mean of the males (red) and females (blue) where the
sex with the lower mean for each day was layered on top. Magnification of the dark green cluster: weekend high heatmap (B);
and dark purple cluster: weekend low heatmap (C). Heatmap rows, representing one individual each, are all of equal size so that
the height of the heatmap is representative of the number of people in the cluster. Individuals are labeled and sorted by sex
(blue box on the left of the heatmap for female, red for male). D) Kernel density estimate plot of consecutive disparity index
calculated from four consecutive months for the female and male whole population, weekend cluster population, and other
clusters. Vertical dashed lines represent the population median CDI.
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A) Boxenplot of consecutive disparity indices for each sex-age category (Kruskal-Wallis, Bonferroni corrected significance
threshold for six comparisons: P=.008). B) Female and male kernel density estimate plots of consecutive disparity index (CDI)
in each age bin. Dashed lines represent the median CDI of the sex-age population.
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GAM fitted factor functions for sex (A), weekend rhythm (B), and age (C) with confidence intervals. D) Boxplot of consecutive
disparity index of 24-hour MET sums for each unique phenotype group in order of the model prediction (green line) for that
phenotype group. Age-sex categories are colored as they were in Figure 4A and hatching indicates the presence of a weekend
rhythm in individuals in the labeled group (P = patternless, W = weekend rhythm). E) Stacked histogram (ordered for visual
clarity) of the number of individuals in CDI bins labeled by phenotype group, highlighting the overlap of each group in most
bins.
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Multimedia Appendixes
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Tables recording population standard deviations of each sex for each MET sum metric and for each sex subgroup for 24-hour
MET sums, and figures related to data filling (Supplementary Figures 1-5). Population standard deviations are presented here for
their relevance to power analysis.
URL: http://asset.jmir.pub/assets/ef00e0a0490c476097090b063dbd228e.doc
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