

A Systematic Review of Digital Health Solutions for Cardiovascular Disease Prevention

Yihan Qi, Emma Mohamad, Arina Anis Azlan, Chenglin Zhang, Yilian Ma, Anqi Wu

Submitted to: Journal of Medical Internet Research on: August 02, 2024

Disclaimer: © **The authors. All rights reserved.** This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.

Table of Contents

A Systematic Review of Digital Health Solutions for Cardiovascular Disease Prevention

Yihan Qi¹; Emma Mohamad^{2, 1} PhD; Arina Anis Azlan^{2, 1} PhD; Chenglin Zhang¹; Yilian Ma¹; Anqi Wu¹

Corresponding Author:

Emma Mohamad PhD
Centre for Research in Media and Communication
Faculty of Social Sciences and Humanities
Universiti Kebangsaan Malaysia
Bangi
MY

Abstract

Background: Cardiovascular disease (CVD) remains a critical global health concern, contributing significantly to global mortality rates, with approximately 70% of cases linked to modifiable risk factors. While traditional methods for CVD prevention face challenges, digital health technologies offer promising avenues for intervention. However, the extent to which these technologies comprehensively address the spectrum of CVD prevention strategies remains unclear. Currently, there is an absence of systematic evaluations within the existing literature regarding the effectiveness and scope of digital solutions in CVD prevention. This emphasizes the need for examination and synthesis of available research to guide future developments and implementations.

Objective: This review aims to make a thorough analysis of how digital technologies can effectively tackle the challenges posed by traditional approaches to CVD prevention. This review aims to consolidate existing literature on digital solutions for CVD prevention, delineate the key components of successful CVD prevention targeted by digital solutions, and outline the research gaps requiring attention to foster the development of sustainable and scalable digital solutions for CVD prevention.

Methods: Our methodology involved identifying primary literature on CVD prevention using digital solutions, specifically technologies facilitating remote care beyond traditional telephone use. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework as a guideline, we searched comprehensively in Web of Science, Scopus, and PubMed to retrieve original studies published in English between January 2000 and May 2024.

Results: Our search identified 30 eligible studies, with 24 (80%) being randomized controlled trials (RCTs). The digital solutions reviewed for CVD prevention primarily focused on baseline assessment (97%,), physical activity counseling (60%), tobacco cessation (47%), blood pressure management (43%), and medication adherence (33%). Technologies such as smartphones and

wearables (53%), email and short message service (SMS) communications (40%), and websites or web portals (10%) were utilized in the studies. Approximately half of the studies addressed blood pressure, exercise capacity, and weight, whereas less than a third addressed medication use, quality of life, dietary habits, intervention adherence, waist circumference, and blood glucose

levels.

Conclusions: Digital solution has the potential to alleviate challenges associated with traditional CVD prevention approaches by enhancing preventive behaviors and monitoring health indicators. However, evaluated interventions have predominantly focused on medication use, quality of life, dietary habits, intervention adherence, and waist. Thus, subsequent studies are crucial with more extensive interventions in CVD prevention for assessing their lasting effect on key cardiovascular outcomes. Clinical Trial:

(JMIR Preprints 02/08/2024:64981)

DOI: https://doi.org/10.2196/preprints.64981

¹Centre for Research in Media and Communication Faculty of Social Sciences and Humanities Bangi MY

²Komunikasi Kesihatan (Healthcomm)-UKM Research Group Universiti Kebangsaan Malaysia Bangi MY

Preprint Settings

- 1) Would you like to publish your submitted manuscript as preprint?
- ✓ Please make my preprint PDF available to anyone at any time (recommended).

Please make my preprint PDF available only to logged-in users; I understand that my title and abstract will remain visible to all users. Only make the preprint title and abstract visible.

- No, I do not wish to publish my submitted manuscript as a preprint.
- 2) If accepted for publication in a JMIR journal, would you like the PDF to be visible to the public?
- ✓ Yes, please make my accepted manuscript PDF available to anyone at any time (Recommended).

Yes, but please make my accepted manuscript PDF available only to logged-in users; I understand that the title and abstract will remain very Yes, but only make the title and abstract visible (see Important note, above). I understand that if I later pay to participate in <a href="https://example.com/above/note-above-no

Original Manuscript

Review

A Systematic Review of Digital Health Solutions for Cardiovascular Disease Prevention

Abstract

Background: Cardiovascular disease (CVD) remains a critical global health concern, contributing significantly to global mortality rates, with approximately 70% of cases linked to modifiable risk factors. While traditional methods for CVD prevention face challenges, digital health technologies offer promising avenues for intervention. However, the extent to which these technologies comprehensively address the spectrum of CVD prevention strategies remains unclear. Currently, there is an absence of systematic evaluations within the existing literature regarding the effectiveness and scope of digital solutions in CVD prevention. This emphasizes the need for examination and synthesis of available research to guide future developments and implementations.

Objective: This review aims to make a thorough analysis of how digital technologies can effectively tackle the challenges posed by traditional approaches to CVD prevention. This review aims to consolidate existing literature on digital solutions for CVD prevention, delineate the key components of successful CVD prevention targeted by digital solutions, and outline the research gaps requiring attention to foster the development of sustainable and scalable digital solutions for CVD prevention.

Methods: Our methodology involved identifying primary literature on CVD prevention using digital solutions, specifically technologies facilitating remote care beyond traditional telephone use. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework as a guideline, we searched comprehensively in Web of Science, Scopus, and PubMed to retrieve original studies published in English between January 2000 and May 2024.

Results: Our search identified 30 eligible studies, with 24 (80%) being randomized controlled trials (RCTs). The digital solutions reviewed for CVD prevention primarily focused on baseline assessment (97%,), physical activity counseling (60%), tobacco cessation (47%), blood pressure management (43%), and medication adherence (33%). Technologies such as smartphones and wearables (53%), email and short message service (SMS) communications (40%), and websites or web portals (10%) were utilized in the studies. Approximately half of the studies addressed blood pressure, exercise capacity, and weight, whereas less than a third addressed medication use, quality of life, dietary habits, intervention adherence, waist circumference, and blood glucose levels.

Conclusions: Digital solution has the potential to alleviate challenges associated with traditional CVD prevention approaches by enhancing preventive behaviors and monitoring health indicators. However, evaluated interventions have predominantly focused on medication use, quality of life, dietary habits, intervention adherence, and waist. Thus, subsequent studies are crucial with more extensive interventions in CVD prevention for assessing their lasting effect on key cardiovascular outcomes.

Keywords: cardiovascular disease prevention; cardiovascular outcomes; digital technologies; remote care

Introduction

Cardiovascular Disease Prevention

Cardiovascular disease (CVD) remains a significant worldwide health issue, making a contribution to global mortality. Approximately 70% of CVD cases are due to modifiable risk factors [1], these include lifestyle-related elements such as physical inactivity, poor dietary habits, high levels of blood pressure, and tobacco use. CVD prevention includes primary, secondary, and tertiary stages. Primary prevention targets high-risk individuals without CVD [2], secondary prevention focuses on those with established CVD, and tertiary prevention is for individuals seriously affected by CVD and aims to enhance their life expectancy [3]. Tertiary prevention involves procedures such as coronary angioplasty, stenting, and bypass surgery to prevent disease progression, therefore this study only focused on primary and secondary prevention strategies to prevent the risk of CVD and slow progression. However, despite the evidence supporting the effectiveness of CVD prevention initiatives, there is a significant difference between the potential benefits and the actual participation of individuals. Participation rates in preventive strategies still remain low, and adherence to lifestyle changes and medical recommendations is still unstable [4,5]. This arises from challenges such as socioeconomic inequalities, differences in timing of participation, limited awareness or understanding of preventive strategies, restricted access to healthcare resources, and barriers related to transportation and distance [6]. Furthermore, barriers in healthcare systems, such as insufficient funding, fragmented care delivery, and inadequate integration, further hinder the adoption of CVD prevention measures [3].

Digital Solutions for CVD Prevention

Technological advances in CVD prevention offer solutions to the limitations of traditional facility-based measures. Mobile applications, wearable devices, telemedicine, and remote monitoring systems can improve individual engagement and adherence. These approaches can provide personalized instructions, real-time monitoring, and remote consultations, making it easier to manage their cardiovascular health. Additionally, these digital approaches can reach broader populations, including those with limited access to healthcare facilities. In this study, we employ digital health solutions to incorporate a range of technologies to facilitate care delivery. This way acknowledges the variety of digital tools available, including eHealth, mHealth, short message service (SMS), wearable devices, mobile applications, telemedicine. Although studies have shown the results regarding the effectiveness of digital health solutions in CVD prevention, such as those delivered through mobile applications, these are largely restricted to specific settings and have not yet been broadly implemented in clinical practice [7,8]. Digital solutions have considerable potential to improve the results of the CVD prevention by improving accessibility, efficiency, and individual engagement. However, to incorporate these innovations into everyday healthcare, various barriers must be addressed, including regulatory issues, interoperability challenges, and limitations within the healthcare system.

At present, there is a lack of understanding about how well digital solutions for CVD prevention cover the elements of CVD prevention and their success in achieving the desired results. Therefore, the focus of this study is to evaluate digital technologies for CVD prevention and to evaluate the thoroughness of these solutions. Given the growing need for technological innovation to reshape the CVD prevention landscape, this study serves multiple purposes: Firstly, it integrates existing literature on digital solutions for CVD prevention. Secondly, it

identifies key components of CVD prevention that are effectively addressed through digital solutions. Finally, it charts the gaps that need attention to facilitate the sustainable integration of digital solutions for CVD prevention into clinical practice.

Methods

We use key questions regarding the design of studies to evaluate CVD prevention, including technologies utilized, sample sizes, time of interventions and follow-up periods, key findings, and the comprehensiveness of the investigated solutions. Our approach adheres strictly to established guidelines in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework [9].

Eligibility Criteria

Our search included Web of Science, Scopus, and PubMed for studies published in English between January 2000 and May 2024 on digital solutions to prevent CVD. For the purposes of this review, 'digital' refers to the use of advanced technologies to provide remote behavioral interventions and these digital technologies extend beyond basic telephonic communication. Specifically, it includes Internet-based platforms that facilitate interactive and personalized health interventions, wearable devices that monitor and provide feedback on physiological parameters, and mobile applications that provide user-friendly interfaces for tracking health behaviors, receiving educational content, and participating in virtual tutoring sessions. As noted in the American College of Cardiology Scientific Statement on CVD Prevention [10], studies that relied solely on telephone interventions were not included in this review.

We use a two-step process to assess eligibility for inclusion. Initially, the article titles and abstracts were reviewed for relevance. Following this, a thorough examination of the full text was performed to ensure it met the pre-established criteria. Articles were selected if (1) they conducted an original study using telemedicine or digital methods specifically aimed at CVD prevention, and (2) reported findings regarding feasibility and usability. At the same time, we have clearly defined exclusion criteria to maintain quality. Specifically, articles were excluded if (1) there were only abstracts but no accessible full version, (2) the articles focused only on methodological part without providing primary data, (3) the articles were not designed to involve any participants or groups of people, or (4) the articles lacked a follow-up period, such as a cross-sectional study that does not track results over time.

Systematic Review Process

The review process consisted of several stages, beginning with a search on Web of Science, Scopus and PubMed databases in May 2024. The search string was created by merging keywords related to digital technologies of healthcare, prevention measures, and CVD. The specific search terms we used were detailed in Appendix 1. All retrieved articles then proceed to the next title and abstract filtering stage. To facilitate filtering, articles and abstracts are exported to do the filtering process in Microsoft Excel.

2871 articles were searched from the Web of Science, Scopus, and PubMed. The title and abstract filtering found redundancy, and as a result, 1542 duplicates were removed, resulting in 1329 articles advancing to the next stage of the filtering process. In the initial quality assessment process, we used a peer review method involving all researchers. At this stage, researchers read the title and abstract of each article to determine which articles will advance

to the full-text screening stage. During the full-text screening stage, the selected articles were thoroughly reviewed and those articles with researchers' consensus were included. Of the 1329 articles reviewed on the titles and abstracts, 261 were selected for detailed full-text reading based on the consensus of the researchers. 1068 articles were excluded because their titles and abstracts were not related to the use of telemedicine or digital solutions to prevent CVD. In the end, the entire screening process produced 30 eligible articles. Beyond the initial peer review quality assessment process, we used the assessment methodology of Abouzahra et al. [11] to reassess the quality of 30 eligible articles. This involved evaluating each article based on 6 questions and assigning a score, if an article has an overall score of more than 3.0, it is considered to be of sufficient quality and is included in the review. According to our quality assessment, all articles met the good quality standards as shown in Appendix 2. The exclusion of 231 articles was mainly due to secondary analysis, conference abstracts, protocol papers, lack of original research, and lack of follow-up period. For instance, a study by Ernsting et al. was excluded as although it discussed the potential of mobile health applications to change health-related behaviors and manage chronic conditions in patients with CVDs and diabetes mellitus [12], it was a cross-sectional study that did not track outcomes over time and lacked follow-up periods. Figure 1 illustrated the flow of this process.

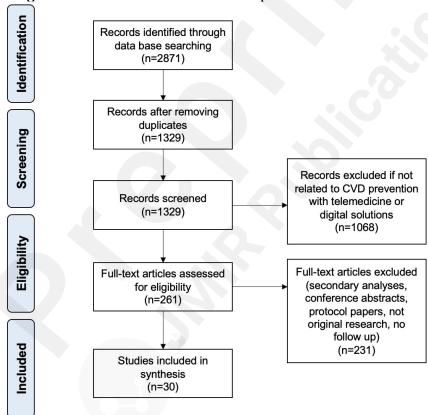


Figure 1. PRISMA flowchart

Data Evaluation

To ensure a detailed assessment of CVD prevention across all 30 articles, we documented the specific measures used in each article. Our approach follows the American Heart Association consensus statement [13] and Guide to Primary Prevention of Cardiovascular Diseases [14] about the components of primary and secondary CVD prevention. In addition, we divided the digital solutions outlined in each article into two groups: those that operate independently and those that enhance traditional approaches to CVD prevention. According to Wongvibulsin et al. [15], articles were classified as standalone solutions if the intervention primarily utilizes

remote teaching, with the initial face-to-face meeting dedicated to onboard, baseline assessment, or outcome assessment, provided the primary intervention was conducted remotely. Moreover, we observed other characteristics including CVD prevention type, study countries, study designs applied, participation and population, duration of intervention or follow-up, personnel used, and delivery settings.

Result

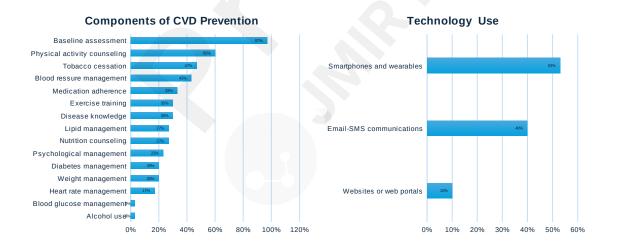
Characteristics of the Eligible Studies

This review included 30 studies meeting the inclusion criteria detailed in Table 1, with their characteristics detailed in Table 2. Of the 30 studies, 24 studies (24/30, 80%) were RCTs and 23 studies focused on secondary prevention (23/30, 77%). Most of these studies were conducted in the Americas (19/30, 63%). The median sample size was 465.5 (IQR 162.75-751.5), with a median follow-up period of 6 months (IQR 3.5-12) and a median intervention duration of 6 months (IQR 3-12). 28 (28/30, 93%) were standalone digital CVD prevention interventions. In Figure 2, the most frequently components of CVD prevention were baseline assessment (29/30, 97%), physical activity counseling (18/30, 60%), tobacco cessation (14/30, 47%), blood pressure management (13/30, 43%), and medication adherence (10/30, 33%). Approximately one-third of the studies covered additional components of CVD prevention, such as disease knowledge (9/30, 30%) and exercise training (9/30, 30%). Less than one-third of the studies focused on nutrition counseling (8/30, 27%), lipid (8/30, 27%), psychological management (7/30, 23%), diabetes (6/30, 20%), weight (6/30, 20%), heart rate (5/30, 17%), blood glucose (1/30, 3%), and alcohol use (1/30, 3%). Smartphones and wearables were utilized in 53% (16/30), email-SMS communications in 40% (12/30), and websites or web portals in 10% (3/30). Interventions are most often directed by research team staff (26/30, 87%), followed by health coaches (3/30, 10%), physicians (3/30, 10%), health professionals (3/30, 10%), nurses (2/30, 7%), dietitians (1/30, 3%), pharmacists (1/30, 3%), and community health workers (1/30, 3%). The most frequently evaluated outcome was blood pressure (14/30, 47%). Other commonly assessed outcomes included exercise capacity (12/30, 40%), weight (12/30, 40%), lipid profile (11/30, 37%), nicotine dependence (9/30, 30%), medication use (8/30, 27%), quality of life (7/30, 23%), dietary habits (5/30, 17%), intervention adherence (4/30, 13%), waist (4/30, 13%), and blood glucose (2/30, 7%).

Reference	Prevention Type	Location	Research Design and Participation	Intervention Measures	Components of CVD prevention	Personnel and Delivery Setting	Outcomes	Follow-up and Intervention Duration
Chow et al., 2015 [16]	Secondary	Australia	RCT among 710 patients with documented coronary heart disease (CHD)	6-month intervention of the tobacco, exercise and diet messages (TEXT ME) program	Baseline assessment Tobacco cessation Physical activity counseling Nutrition counseling Disease knowledge	Standalone intervention Researcher	Lipid profile Blood pressure Weight Exercise capacity Nicotine dependence	6 months, 6 months
Maddison et al., 2015 [17]	Secondary	New Zealand	RCT among 171 patients with ischemic heart disease	24-week Heart Exercise And Remote Technologies intervention about personalized, automated package of text messages and secure website with video messages	Baseline assessment Exercise training Psychologic al managemen t	Standalone intervention Researcher, staff	Oxygen uptake Exercise capacity Self-efficacy Ouality of life Economic evaluation	6 months 6 months
Anand et al., 2016 [18]	Primary	Canada	RCT with 343 people who were free of CVD	12-month emails or text messages program	Baseline assessment Physical activity counseling Nutrition counseling	Standalone intervention Researcher	Myocardial infarction Blood pressure Waist	• 12 months • 12 months
Johnston et	Secondary	Sweden	RCT with 174	6-month	• Baseline	• In-person	• Weight	• 6 months

al., 2016 [19]	in	nfarction suppo	ort Nation on reaction on reaction on reaction on reaction on reaction reac	Weight managemen to the control of t	Standalone intervention Nurse, physician	Exercise capacity Nicotine dependence Medication use Intervention adherence Quality of life Satisfaction	6 months
Redfern et al., Secon 2016 [20]	1:		ages sevention of	assessment Tobacco cessation Physical activity	In-person • session • Standalone intervention • Group • session Researcher • •	Blood	12 months 6 months
Thakkar et Secon al., 2016 [21]	7.		ages sevention of	assessment	• intervention Researcher		6 months 6 months
Akhu-Zaheya Secon & Shiyab, 2017 [22]	10	CT among 3-mo 60 patients interv ith CVD	vention a	assessment	Standalone intervention Researcher •		6 months 3 months
Jones et al., Prima 2018 [23]	States st	sk for CVD mess:	age system ages ystem longer text in larges If yention it is in large in la	assessment Blood pressure	In-person • session • Group • session • Researcher		3 months 3 months
Morawski et Prima al., 2018 [24]	States 4	ypertensive applic	tphone action • If the second	assessment	Standalone • intervention Researcher •		3 months 3 months
Santo et al., Secon 2018 [25]	7.	CT among 6-mo 10 patients interv ith CHD TEXT	vention of a ME	assessment Nutrition * Tounseling Blood pressure managemen t. Lipid managemen t. Weight managemen	intervention • Researcher •		6 months 6 months
Beratarreche Prima a et al., 2019	7	55 people at applic sk for CVD interv	cation a vention for • I lating CVD I	assessment Blood pressure managemen t Disease knowledge	intervention Study administrativ	use	12 months 6 months
Brasier et al., Secon 2019 [27]	nd and ra Germany st 6 w at	tudy among interv 72 patients instal rith presumed version	tphones a vention with • H lled a study r on of the t nercially	assessment Heart rate • managemen	Standalone intervention Researcher, cardiology physician	AF •	12 months 12 months

			(AF)	Heartbeats application							
Dorje et al., 2019 [28]	Secondary	China	RCT among 321 patients with CHD	4-month intervention via WeChat	Tobac cessa Exerc traini Physis activi couns Blooc press mana t Heart mana t Disea know Media adhes Psyct al	sment ccco • ction tise ing ccal ty seling i true ure ugemen trate tgemen tsee ledge cation	Standalone intervention Social media platform WeChat coach		Health outcomes Lipid profile Blood pressure Exercise capacity Nicotine dependence Dietary habits Weight Quality of life	•	12 months 6 months
Huo et al.,	Secondary	China	RCT among 502 patients with both CHD and diabetes mellitus	6-month text messages intervention	Blood press mana t Lipid mana t Media adher Physi activi	sment i ure ugemen gemen cation rence ccal tty	Standalone intervention Researcher		Blood pressure Blood glucose Lipid profile Weight Exercise capacity		6 months 6 months
Perez et al., 2019 [30]	Primary	United States	Prospective randomized study 419297 among participants without AF	3-month smartphone application intervention	 Heart 		Standalone intervention Researcher	·	Pulse		3 months 3 months
Yousuf et al., 2019 [31]	Primary	Netherlan ds and United Kingdom	RCT among 402 people at risk for CVD	18-month email, e- Coaching intervention	Blood press mana t Lipid mana t Weigl mana t Physi activi couns Diabe	sment i uure ggemen oggemen ht tggemen ccal tty seling	In-person session Standalone intervention Group session Researcher		Weight Blood pressure Blood glucose Lipid profile Quality of life Exercise capacity Dietary habits Economic evaluation	•	6 months 18 months
Zheng et al., 2019 [32]	Secondary	China	RTC among 822 patients with CHD	6-month text messages intervention of TEXT ME	Basel asses Disea know Media adher Blooc press mana t Tobac cessa Exerc traini Physicactivic couns Diabe	sment see eledge cation rence to ure geemen ccco tion tise ing cal ty ty	In-person session Standalone intervention Group session Researcher	:	Blood pressure Weight Nicotine dependence Lipid profile Exercise capacity	:	8 months 6 months
Broers et al., 2020 [33]	Secondary	Spain and the Netherlan ds	RCT among 150 patients with CHD	3-month behavioral intervention eHealth program	 Exerc traini Physi activi couns Diabe 	sment cise • ing ical ity seling	Standalone intervention Researcher	:	Life style Quality of life Satisfaction Intervention adherence	:	6 months 3 months
Grau-Pellicer et al., 2020 [34]	Secondary	Spain	RCT among 41 patients with stroke	8-week intervention about digital platform based on mHealth applications	• Basel	sment rise ing ical ty	Standalone intervention Group session Researcher		community ambulation Sedentary behavior Exercise capacity Quality of life Satisfaction	:	2 months 2 months
Redfern et al., 2020 [35]	Secondary	Australia	RCT among 934 patients with or at risk of CVD	12-month Consumer Navigation of Electronic Cardiovascular Tools intervention	 Medie adher Disea 	sment cation rence use rledge	In-person session Standalone intervention Researcher, clinical staff	:	Medication use Blood pressure Lipid profile Nicotine dependence		12 months 12 months


Sengupta et al., 2020 [36]	Secondary	United States	Pilot study among 10 women	12-week intervention via smartphone and smartwatch on which the HerBeat application	 Physical activity counseling Diabetes managemen t Tobacco cessation Psychologic al managemen t Baseline assessment Exercise training Heart rate managemen	•	Standalone intervention Researcher, trained professional, health coach	:	Weight Exercise capacity eHealth literacy All-cause mortality Intervention adherence Weight Anxiety or depression	:	3 months 3 months
Coorey et al.,	Secondary	Australia	RCT among 934 patients	12-month purpose-built,	t Diabetes managemen t Psychologic al managemen t Baseline assessment		In-person session	:	Life style eHealth		12 months
2021 [37]			934 patients with CVD	purpose-buit, multi-feature web application intervention	 assessment Nutrition counseling Psychologic al managemen t Tobacco cessation Physical activity counseling Medication adherence Disease knowledge		session Standalone intervention Nurses, detitians, pharmacists		eneaum literacy		months 12 months
Kang et al., 2021 [38]	Secondary	Korea	RCT among 666 patients with clinical atherosclerotic CVD	6-month smartphone application intervention	Baseline assessment Blood pressure managemen t Physical activity counseling Weight managemen t Medication adherence Lipid managemen t Tobacco cessation		Standalone intervention Researcher, physician		CVD Risk Blood pressure Lipid profile Nicotine dependence Diabetes status		12 months 6 months
Muralidharan et al., 2021 [39]	Primary	India	RCT among 741 people with prediabetes and/or obesity	12-week intervention about mDiab application in smartphones and weekly health coach calls	Baseline assessment Blood pressure managemen t Physical activity counseling Weight managemen t Lipid managemen t Tobacco cessation		Standalone intervention Group session Researcher, coach	:	Waist Blood pressure	:	3 months 3 months
Feldman et al., 2022 [40]	Secondary	United States	Observational study among 1802 patients with stroke	43-month medical history, Apple Watch wear patterns, and AF risk intervention	Blood pressure managemen t Weight managemen t Heart rate managemen t Tobacco cessation Alcohol use		Standalone intervention Group session Researcher	•	Medication use	•	43 months 43 months
Sakakibara et al., 2022 [41]	Secondary	Canada	RCT among 126 patients within one- year post- stroke	12-month intervention about Stroke Coach and attention control Memory Training	 Baseline assessment Physical activity counseling Medication adherence Blood pressure managemen t Lipid managemen t	•	Standalone intervention Group session Researcher, health professionals	:	Life style Quality of life Cognitive status Anxiety or depression	:	6 months 6 months
Cheung et al., 2023 [42]	Secondary	Australia	RCT among 902 patients with type 2 diabetes or	6-month SMS text messages intervention	Baseline assessment Lipid managemen	•	In-person session Researcher	:	Blood pressure Lipid profile Medication	:	6 months 6 months

			СНО		t Tobacco cessation Physical activity counseling Diabetes managemen t		use • Engagement	
Li et al., 2023	Secondary	China	Nonrandomi- zed trial among 243 patients with stroke	3-month smartphone mobile application intervention	Baseline assessment Disease knowledge Medication adherence	 In-person session Standalone intervention Researcher 	Intervention adherence Medication use	• 5 months • 3 months
Xu et al., 2023 [44]	Secondary	China	RCT among 108 patients with CHD	12-week smartphone-based gamification intervention	Baseline assessment Physical activity counseling Psychologic al managemen t	Standalone intervention Researcher	Step count Weight Exercise capacity Competence Engagement	3 months 3 months
Beckie et al., 2024 [45]	Secondary	United States	RCT among 47 women with CHD	3-month mHealth intervention with a smartphone, smartwatch, and health coach	Baseline assessment Physical activity counseling	In-person session Standalone intervention Researcher	Dietary habits Anxiety or depression Self-efficacy Blood pressure Health outcomes Waist	• 3 months • 3 months

Table 1. Characteristics of the eligible studies

Items	Proportion
Research Type, n (%)	
RCT	24 (80)
Prospective randomized study	2 (7)
Pilot study	1(3)
Nonrandomized trial	1(3)
Observational study	1 (3)
Qualitative	1 (3)
Prevention type, n (%)	
Secondary	23 (77)
Primary	7 (23)
Location of study, by continent, n (%)	
America	19 (63)
Asia	8 (27)
Oceania	8 (27)
Europe	5 (17)
Publication year, n (%)	
2015-2019	17 (57)
2020-2024	13 (43)
Median of sample size (IQR)	465.5 (162.75-751.5)
Median of follow-up time (months; IQR)	6 (3.5-12)
Median of intervention duration (months; IQR)	6 (3-12)

Table 2. Summary of the eligible studies

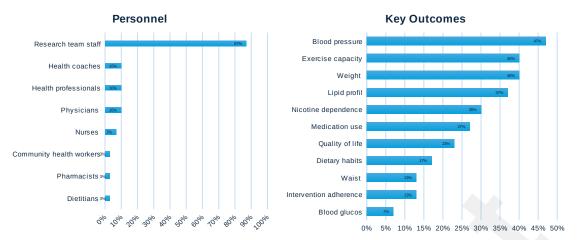


Figure 2. Percentage of eligible studies with components of CVD prevention, technology use, personnel, and key outcomes

Technology Use in Digital Solution

The analysis of 30 selected studies categorized the use of technology in digital health solutions for CVD prevention into three main categories: studies smartphones and wearables, email-SMS communications, and websites or web portals. Additionally, 1 study incorporated both email-SMS communications and websites or web portals.

More than half of the selected studies integrated smartphones or mobile devices with wearable technology for monitoring and managing patients' health conditions. Notable researchers including Johnston et al. [19], Morawski et al. (Morawski et al., 2018), Beratarrechea et al. [26], Brasier et al. [27], Dorje et al. [28], Perez et al., [30], Grau-Pellicer et al. [34], Sengupta et al., [36], Redfern et al. [35], Broers et al., [33], Kang et al. [38], Muralidharan et al. [39], and Li et al. [43] focused on the efficacy of smartphone applications in preventing CVD. For instance, Johnston et al. [19] evaluated an interactive patient support tool via a smartphone application designed to enhance treatment adherence and cardiovascular health among myocardial infarction patients. According to Grau-Pellicer et al. [34], they evaluated the effectiveness of a mHealth application on physical activity adherence, and suggested that this technology provides a way to promote adherence to home exercise programs post stroke. Sengupta et al. [36], Feldman et al. [40], and Beckie et al. [45] examined interventions that use smartphones and smartwatches to enhance CVD prevention. Xu et al. [44] explored the smartphone-based gamification intervention for CVD prevention. The use of email-SMS communications was also considerable, indicating the popularity of interventions such as the TEXT ME program [16,20,21,25,32]. In addition, the use of email or SMS programs [18,29,31], and SMS intervention [22,23,42], illustrated the various approaches employed in the field. There was relatively limited research on the use of websites or portals. Coorey et al. [37] introduced a purpose-built, versatile web-based application intervention. Sakakibara et al. [41] developed an attention control memory training program delivered via the web. Maddison et al., [17] took a multifaceted approach, integrating email-SMS communications and websites or portals into their interventions.

Key Outcomes

Across the 30 studies, the most common key findings are summarized in Table 3. We have distinguished between findings related to enhancing preventive behaviors and those related to

monitoring health indicators for a more nuanced understanding of the results. For instance, blood pressure is categorized as a health indicator, whereas exercise capacity is categorized as a preventive behavior for CVD prevention. After the analysis of the key findings, it was found that individuals using digital solutions generally performed better when receiving interventions compared to individuals using traditional CVD prevention measures. For instance, due to reminders and personalized feedback, digital interventions promoted more consistent medication use [19,22,24,26,42,43]. Furthermore, as a result of the enhanced engagement and support provided by these technologies, the quality of life indicators of participants using digital solutions improved significantly [17,31,33,34,41]. Dietary habits had also improved substantially, with digital platforms often providing tailored nutrition advice and monitoring that was more effective than traditional measures [22,25,28,31,45]. Intervention adherence was notably higher, which could be attributed to the real-time feedback provided by digital tools [19,32,36,43]. Waist circumference also showed slight reduction among those using digital interventions [23,39,45].

Notably, the digital solution showed efficacy comparable to the traditional control group across outcomes, including nicotine dependence, blood pressure, blood sugar levels, exercise capacity, and weight management. For example, digital interventions had the same impact on nicotine dependence as traditional interventions, with nearly half of the studies showing a positive trend towards improving smoking habits [16,20,26,38], and the remaining half showing no significant change [19,22,28,32,35]. Similarly, blood pressure, blood glucose levels, exercise capacity, and weight management results were comparable to those of the traditional control group. However, the effectiveness of digital solutions varies when it came to lipid profiles. Of the 10 studies reviewed, 3 reported elevated high-density lipoprotein (HDL) levels in the intervention group [25,28,31,35]. 3 other studies showed reductions in low-density lipoprotein (LDL) and cholesterol levels [16,20,23]. No significant changes were observed in the remaining 4 studies [29,32,38,42].

Blood pressure (14/30, 47%) (health indicator)	8 of the 14 studies reported that the digital solutions improved blood pressure management and was no worse than the control group
	[16,20,23,24,28,31,35,45]. In contrast, 6 studies concluded that it did not have
	a statistically significant influence on blood pressure management
	[18,29,32,38,39,42].
Exercise capacity (12/30, 40%) (preventive behavior)	7 studies examined exercise capacity as outcomes showing that the performance of the intervention group was comparable to that of the control group
	[16,20,21,28,34,35,44]. Notably, in five of these studies, no significant difference in
	exercise capacity was observed [17,19,29,31,32].
Weight (12/30, 37%) (preventive behavior)	In 6 of the 11 studies, digital solutions were effective in addressing weight
	management [16,20,23,25,31,36,44]. However, 5 studies found no significant change or a slight decrease in body weight or BMI after the digital intervention
	[19,28,29,32,35].
Lipid profile (11/30, 37%) (health indicator)	3 of the 10 studies reported elevated HDL levels in the intervention group
	$[25,\!28,\!31,\!35].$ 3 other studies showed reductions in LDL and total cholesterol levels
	[16,20,23]. No significant changes were observed in the remaining 4 studies
	[29,32,38,42].
Nicotine dependence (9/30, 30%) (health indicator)	Of the 9 studies included, 4 showed a positive trend towards improvement in smoking habits, as evidenced by a reduction in nicotine dependence scores
	$[16,\!20,\!26,\!38], while the remaining 5 did not change significantly [19,\!22,\!28,\!32,\!35].$
Medication use (8/30, 27%) (preventive behavior)	6 studies found that medication use was beneficial and had a positive effect
	$[19,\!22,\!24,\!26,\!42,\!43]. \ However, \ 2 \ studies \ reported \ slight \ or \ in significant \ changes \ due$
	to medication [35,40].
Quality of life (7/30, 23%) (preventive behavior)	5 studies documented an improvement in quality of life for participants in the

	intervention group $[17,31,33,34,41]$. Conversely, 2 studies failed to observe
	significant differences in quality of life [19,28].
Dietary habits (5/30, 17%) (preventive behavior)	Of the 5 studies reviewed, all reported improvements in dietary habits
	[22,25,28,31,45].
Intervention adherence (4/30, 13%) (preventive behavior)	4 studies provided evidence to support the idea that digital solutions can improve
	$individuals'\ adherence\ to\ interventions\ [19,32,36,43].$
Waist (4/30, 13%) (health indicator)	3 studies showed a slight reduction in waist circumference after the digital
	intervention [23,39,45]. However, there was also 1 study in which no significant
	effects were observed [18].
Blood glucose (2/30, 7%) (health indicator)	1 study showed the effectiveness of interventions in managing blood glucose levels
	[29]. In contrast, 1 study found no significant benefit in this regard [31].

Table 3. Summary of findings by thematic outcomes.

Study outcomes varied across follow-up times. Dietary habits and intervention adherence yielded positive results at various intervals, including 3, 6, and 12 months [22,25,28,31,45], as well as 3, 5, 6, and 8 months [19,32,36,43]. Waist circumference decreased at 3 months in studies by Beckie et al. [45], Jones et al. [23], and Muralidharan et al. [39], but Anand et al. [18] found no significant effects at 12 months. Quality of life was assessed at 6-month intervals [17,31,33,41] and at 2 months [34], with Johnston et al. [19] and Dorje et al. [28] finding no significant differences in digital intervention versus usual care groups at 6 and 12 months. Medication use improved health outcomes over 3, 5, 6, and 12 months [19,22,24,26,42,43], although Feldman et al. [40] and Redfern et al. [35] observed minimal changes over longer periods (12 and 43 months). Studies on nicotine dependence showed varied results, with some studies indicating positive trends over longer follow-ups [16,20,26,38], while others reported different outcomes [19,22,28,32,35]. Positive blood pressure outcomes were reported within 3 months by Beckie et al. [45], Jones et al. [23], and Morawski et al. [24], with improvements observed at 6 months by Chow et al. [16] and Yousuf et al. [31]. Dorje et al. [28] and Redfern et al. [20,35] noted significant benefits at 12 months, whereas Anand et al. [18], Kang et al. [38], and Cheung et al. [42] respectively found no significant impact at 12 and 6 months. Muralidharan et al. [39], Huo et al. [29], and Zheng et al. [32] did not observe notable improvements over 3, 6, and 8 months. Few studies exist on blood glucose levels, with Huo et al. [29] showing effectiveness at 6 months, but Yousuf et al. [31] found no significant benefits during the same period. For exercise capacity, positive findings were reported at 6 and 12 months by Chow et al. [16], Thakkar et al. [21], Dorje et al. [28] and Redfern et al. [20,35], with shorter follow-ups also supporting these findings. However, no significant differences were found between digital intervention and usual care groups at 6 or 8 months [17,19,29,31,32]. For weight management, significant reductions were noted at 6 and 12 months by Chow et al. [16] and Redfern et al. [20], while Jones et al. [23] and Sengupta et al. [36] reported favorable outcomes at 3 months. However, minimal to no improvements were found by Dorje et al. [28] and Huo et al. [29] at 6 months. Johnston et al. [19] and Redfern et al. [35] also showed no significant changes at 6 and 12 months, respectively. Studies with 3 to 6-month follow-ups predominantly showed no significant changes in lipid profiles, with minimal impacts observed within 6 months [23,25,42]. Conversely, longer follow-ups tended to show more pronounced effects, such as significant increases in HDL reported by Dorje et al. [28] and Redfern et al. [35] and reductions in LDL and total cholesterol observed by Redfern et al. [20] and Chow et al. [16]. However, Huo et al. [29] and Kang et al. [38] found no significant lipid changes in long-term studies.

The review examined the comprehensive standalone interventions and found that the interventions in 7 studies identified as standalone included 5 components or more for CVD prevention, excluding baseline assessments [25,28,31,32,35,38,39]. Outcomes associated with most of the key outcomes associated with the prevention of CVD components were heterogeneous through the intervention. Among these 7 studies, Redfern et al. [35] documented outcomes regarding medication use, showing no significant effects. Regarding blood glucose, Yousuf et al. [31] did not find a significant benefit. With regard to waist circumference, Muralidharan et al. [39] demonstrated a reduction in waist circumference after digital intervention. Santo et al. [25], Dorje et al. [28], and Yousuf et al. [31] observed improvements in mood within the intervention group, while Redfern et al. [35] found similar results. Nevertheless, Kang et al. [38] and Zheng et al. [32] discovered that the digital solutions did not significantly impact lipid profiles. Regarding weight management, Santo et al. [25], Yousuf et al. [31], and Redfern et al. [35] observed that digital solutions were effective. In contrast, Dorje et al. [28] and Zheng et al. [32] reported that there was no significant change, or even a slight decrease, in body weight or body mass index (BMI) after the digital intervention. Santo et al. [25], Dorje et al. [28], and Yousuf et al. [31] all recorded improvements in dietary habits. Dorje et al. [28], Yousuf et al. [31], Redfern et al. [35], and Muralidharan et al. [39] reported that the digital solution significantly enhanced blood pressure management and was no worse than the control group. However, Kang et al. [38] found that digital solutions did not significantly affect blood pressure management. In terms of exercise capacity, Dorje et al. [28] and Redfern et al. [35] showed that the intervention group was similar to the control group. Yousuf et al. [31] and Zheng et al. [32] discovered that there was no difference in exercise capacity between the digital intervention group and the control group. For nicotine dependence, Kang et al. [38] showed a positive trend towards improving smoking habits, while Dorje et al. [28], Zheng et al. [32], and Redfern et al. [35] showed no significant change. In terms of quality of life, Yousuf et al. [31] reported an enhanced quality of life, while Dorje et al. [28] reported no significant difference in quality of life of intervention groups. Overall, interventions taken and reported outcomes varied.

Discussion

The Role of Digital Solution for CVD Prevention

The study highlights the potential of digital technologies to enhance healthcare delivery and expand CVD prevention by enhancing preventive behaviors and monitoring health indicators. These digital solutions can significantly improve individual outcomes and facilitate the wider implementation of preventive approaches. Unlike previous systematic reviews, which often focused narrowly on specific aspects of digital health, our study provides a comprehensive assessment of digital solutions, including primary and secondary prevention of CVD. Our analysis of the current studies reveals the diverse effectiveness of various digital solutions. This study is based on a body of existing studies that endorses remote CVD prevention using Internet-based platforms and digital devices. These technologies can provide innovative ways to monitor, educate, and engage individuals. Our findings show that using digital solutions to prevent CVD are both feasible and effective, and the results are comparable to traditional approaches. Whether as a complement or substitute for traditional approaches, digital solutions show great potential in improving individual health outcomes [16,19,21-29,32-34,39,43-45]. Notably, the integration of digital technologies into CVD prevention can make more efficient use of healthcare resources, reduce the burden on healthcare systems, and provide cost-effective solutions for individuals [17,31].

The results of our review are consistent with previous studies, including Gray et al. [46], which demonstrated the effectiveness of remote consultation, smartphone applications, wearables, remote monitoring, and predictive analytics in influencing individual behavior. These digital solutions can greatly contribute to the primary and secondary prevention of CVD and play a role in preventing and managing disease. In addition, Moshawrab et al. [47] showed that wearable device was highly accurate in detecting, predicting, and even treating CVD. Their study highlighted the potential of digital health solutions to improve individual outcomes and optimize the use of healthcare resources, further supporting their integration into standard CVD prevention strategies. Our review and included studies highlight the role communication strategies and digital literacy in digital health solutions to prevent CVD. Effective communication tactics can actually have an impact towards the overall success of these solutions. Strategies such as increasing engagement, enhancing adherence, providing support, offering personalized experiences, and implementing feedback mechanisms can motivate individuals to actively participate in and commit to their preventive behaviors. Effective communication can encourage sustained health outcomes between healthcare providers and individuals by fostering a supportive environment. Moreover, individuals at risk of CVD must have the necessary skills to use these digital health tools effectively. Without adequate digital literacy, the potential benefits of remote consultations, smartphone applications, wearables, and remote monitoring systems cannot be fully realized, as the digital divide is characterized by some individuals having limited access to digital skills, which creates barriers to the effective use of digital health solutions [48]. Improving digital literacy can greatly improve the ability to address CVD prevention by setting baselines, customizing treatment plans, tracking progress, and using technology to address individual challenges through targeted support, especially for older people.

Future Research Recommendations

Some limitations appeared in our review. First, although this review aimed to address the effects and factors surrounding specific phenomena, we did not use meta-analysis methods to summarize empirical evidence due to the heterogeneity of the studies. The reviewed articles exhibited significant variation in study designs, main outcomes, technologies, and control groups. For instance, some studies focused on a single digital health intervention, such as a mobile health application, while others looked at a combination or multiple uses of various digital technologies. In addition, when considering control groups, some studies used standard care in people with traditional CVD prevention, while others did not include control groups. Second, our review is limited by its time frame. While we included relevant papers published between 2000 and 2024, the earliest studies that met our inclusion criteria were from 2015. This might due to that digital solutions for disease prevention are a relatively new field that has emerged with advances in technology in recent years. Third, our review only highlighted primary and secondary prevention of CVD. However, tertiary prevention, which involved advanced medical procedures and interventions aimed at managing and mitigating the longterm effects of diagnosed CVD, also played a role in the integrated management of CVD. Therefore, we suggested several strategies for future research. First, the objectives of digital solutions must be clearly defined, clearly stating whether they are intended as comprehensive standalone programs or as a complement to traditional prevention approaches. Second, detail the specific CVD prevention components targeted by the intervention, including the relevant technology or equipment used. Third, incorporate the results of digital solutions on user engagement and behavior modification using validated metrics such as compliance rates, user

satisfaction surveys, and long-term health outcomes. Fourth, explore the cost-effectiveness of implementing digital solutions to prevent CVD, including tertiary prevention, compared to traditional approaches. May consider factors such as scalability, maintenance, and initial setup costs.

We have identified several key aspects for future research in the field of digital interventions for CVD prevention. Firstly, while digital solutions effectively address factors such as eating habits, interventions targeting other risk factors, including blood glucose control, are still lacking. Moreover, further evaluation is needed to assess the ongoing efficacy of these digital solutions, so studies using larger population and implementing suitable control groups are needed [8,49]. Secondly, future research should focus on integrating multifaceted interventions to address a wide range of CVD risk factors, including stress management. It is crucial to study the synergies of combining digital tools such as mobile applications, wearables and telemedicine. Understanding the psychological and behavioral mechanisms behind user engagement, such as motivation, digital literacy, and personalization, is also critical to improving adherence and sustained behavior change [50]. Thirdly, it is also crucial to evaluate the incidence of adverse events among individuals undergoing these interventions compared to traditional methods [15]. Rigorous monitoring and reporting of adverse events will provide insight into the potential risks associated with these technologies, helping to refine protocols and ensure individual safety. Lastly, exploring the potential of artificial intelligence (AI) to improve communication effectiveness by personalizing and tailoring interventions in real time could significantly improve user experience [51,52]. As an emerging field, AI has shown great potential in fields such as health care and education. In the field of CVD prevention, its ability to analyze large data sets, predict individual outcomes, and tailor interventions to individual health conditions holds great potential for strengthening prevention measures and optimizing patient care pathways [51–53]. As research in this field continues to advance, the integration of AI into clinical practice could lead to more effective, personalized and accessible solutions to combat CVD worldwide.

Conclusions

Our study highlights the potential of digital technologies to alleviate challenges associated with traditional CVD prevention approaches by enhancing preventive behaviors and monitoring health indicators. The widespread implementation of digital solutions in CVD prevention is expected to have a significant impact, increasing accessibility, affordability, cost-effectiveness, and improving individual outcomes beyond what can be achieved with traditional approaches. However, interventions evaluated focused primarily on medication use, quality of life, dietary habits, intervention adherence, and waist circumference, with limited attention to other components of CVD prevention. In addition, our study primarily assessed the technical aspects and comprehensiveness of digital procedures in the prevention of CVD. However, the complexities associated with certification of CVD prevention programs are beyond the scope of this review. Future studies should aim to explore more comprehensive CVD prevention interventions to assess their long-term and sustained impact.

Conflicts of Interest

There are no conflicts of interest in this work.

Abbreviations

AF: atrial fibrillation AI: artificial intelligence BMI: body mass index

CHD: coronary heart disease CVD: cardiovascular disease HDL: high-density lipoprotein LDL: low density lipoprotein

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

RCT: randomized controlled trial SMS: short message service

TEXT ME: tobacco, exercise and diet messages

Multimedia Appendix 1

Multimedia Appendix 2

Reference

- 1. Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, Brauer M, Kutty VR, Gupta R, Wielgosz A, AlHabib KF, Dans A, Lopez-Jaramillo P, Avezum A, Lanas F, Oguz A, Kruger IM, Diaz R, Yusoff K, Mony P, Chifamba J, Yeates K, Kelishadi R, Yusufali A, Khatib R, Rahman O, Zatonska K, Iqbal R, Wei L, Bo H, Rosengren A, Kaur M, Mohan V, Lear SA, Teo KK, Leong D, O'Donnell M, McKee M, Dagenais G. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. The Lancet 2020 Mar 7;395(10226):795–808. doi: 10.1016/S0140-6736(19)32008-2
- 2. Slater K, Colyvas K, Taylor R, Collins CE, Hutchesson M. Primary and secondary cardiovascular disease prevention interventions targeting lifestyle risk factors in women: A systematic review and meta-analysis. Front Cardiovasc Med 2022 Nov 9;9:1010528. PMID:36439996
- 3. Collier J, Kienzler H. Barriers to cardiovascular disease secondary prevention care in the West Bank, Palestine a health professional perspective. Confl Health 2018 Jul 16;12:27. PMID:30026794
- 4. Lönn A, Kallings LV, Andersson G, Paulsson S, Wallin P, Eriksson JS, Ekblom-Bak E. Lifestyle-related habits and factors before and after cardiovascular diagnosis: a case control study among 2,548 Swedish individuals. Int J Behav Nutr Phys Act 2023 Apr 5;20(1):41. doi: 10.1186/s12966-023-01446-w
- 5. Rippe JM. Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. Am J Lifestyle Med 2018 Dec 2;13(2):204–212. PMID:30800027
- 6. Aerts N, Anthierens S, Van Bogaert P, Peremans L, Bastiaens H. Prevention of Cardiovascular Diseases in Community Settings and Primary Health Care: A Pre-Implementation Contextual Analysis Using the Consolidated Framework for Implementation Research. Int J Environ Res Public Health Multidisciplinary Digital

- Publishing Institute; 2022 Jan; 19(14):8467. doi: 10.3390/ijerph19148467
- 7. Islam SMS, Maddison R. Digital health approaches for cardiovascular diseases prevention and management: lessons from preliminary studies. mHealth 2021 Jul 20;7:41. PMID:34345618
- 8. Santo K, Redfern J. Digital Health Innovations to Improve Cardiovascular Disease Care. Curr Atheroscler Rep 2020 Oct 3;22(12):71. doi: 10.1007/s11883-020-00889-x
- 9. PRISMA statement. PRISMA Statement. Available from: https://www.prisma-statement.org [accessed Jun 1, 2024]
- 10. Thomas RJ, Beatty AL, Beckie TM, Brewer LC, Brown TM, Forman DE, Franklin BA, Keteyian SJ, Kitzman DW, Regensteiner JG, Sanderson BK, Whooley MA. Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. J Am Coll Cardiol 2019 Jul 9;74(1):133–153. doi: 10.1016/j.jacc.2019.03.008
- 11. Abouzahra A, Sabraoui A, Afdel K. Model composition in Model Driven Engineering: A systematic literature review. Inf Softw Technol 2020 Sep 1;125:106316. doi: 10.1016/j.infsof.2020.106316
- 12. Ernsting C, Stühmann LM, Dombrowski SU, Voigt-Antons J-N, Kuhlmey A, Gellert P. Associations of Health App Use and Perceived Effectiveness in People With Cardiovascular Diseases and Diabetes: Population-Based Survey. JMIR MHealth UHealth 2019 Mar 28;7(3):e12179. PMID:30920383
- 13. Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, Franklin B, Sanderson B, Southard D. Core Components of Cardiac Rehabilitation/Secondary Prevention Programs: 2007 Update. Circulation American Heart Association; 2007 May 22;115(20):2675–2682. doi: 10.1161/CIRCULATIONAHA.106.180945
- 14. Grundy SM, Balady GJ, Criqui MH, Fletcher G, Greenland P, Hiratzka LF, Houston-Miller N, Kris-Etherton P, Krumholz HM, LaRosa J, Ockene IS, Pearson TA, Reed J, Washington R, Smith SC. Guide to Primary Prevention of Cardiovascular Diseases. Circulation American Heart Association; 1997 May 6;95(9):2329–2331. doi: 10.1161/01.CIR.95.9.2329
- 15. Wongvibulsin S, Habeos EE, Huynh PP, Xun H, Shan R, Porosnicu Rodriguez KA, Wang J, Gandapur YK, Osuji N, Shah LM, Spaulding EM, Hung G, Knowles K, Yang WE, Marvel FA, Levin E, Maron DJ, Gordon NF, Martin SS. Digital Health Interventions for Cardiac Rehabilitation: Systematic Literature Review. J Med Internet Res 2021 Feb 8;23(2):e18773. PMID:33555259
- 16. Chow CK, Redfern J, Hillis GS, Thakkar J, Santo K, Hackett ML, Jan S, Graves N, de Keizer L, Barry T, Bompoint S, Stepien S, Whittaker R, Rodgers A, Thiagalingam A. Effect of Lifestyle-Focused Text Messaging on Risk Factor Modification in Patients With Coronary Heart Disease: A Randomized Clinical Trial. JAMA 2015 Sep 22;314(12):1255–1263. doi: 10.1001/jama.2015.10945

17. Maddison R, Pfaeffli L, Whittaker R, Stewart R, Kerr A, Jiang Y, Kira G, Leung W, Dalleck L, Carter K, Rawstorn J. A mobile phone intervention increases physical activity in people with cardiovascular disease: Results from the HEART randomized controlled trial. Eur J Prev Cardiol SAGE Publications Ltd STM; 2015 Jun 1;22(6):701–709. doi: 10.1177/2047487314535076

- 18. Anand SS, Samaan Z, Middleton C, Irvine J, Desai D, Schulze KM, Sothiratnam S, Hussain F, Shah BR, Pare G, Beyene J, Lear SA, for the South Asian Heart Risk Assessment Investigators. A Digital Health Intervention to Lower Cardiovascular Risk: A Randomized Clinical Trial. JAMA Cardiol 2016 Aug 1;1(5):601–606. doi: 10.1001/jamacardio.2016.1035
- 19. Johnston N, Bodegard J, Jerström S, Åkesson J, Brorsson H, Alfredsson J, Albertsson PA, Karlsson J-E, Varenhorst C. Effects of interactive patient smartphone support app on drug adherence and lifestyle changes in myocardial infarction patients: A randomized study. Am Heart J 2016 Aug 1;178:85–94. doi: 10.1016/j.ahj.2016.05.005
- 20. Redfern J, Santo K, Coorey G, Thakkar J, Hackett M, Thiagalingam A, Chow CK. Factors Influencing Engagement, Perceived Usefulness and Behavioral Mechanisms Associated with a Text Message Support Program. PLOS ONE Public Library of Science; 2016 Oct 14;11(10):e0163929. doi: 10.1371/journal.pone.0163929
- 21. Thakkar J, Redfern J, Thiagalingam A, Chow CK. Patterns, predictors and effects of texting intervention on physical activity in CHD insights from the TEXT ME randomized clinical trial. Eur J Prev Cardiol 2016 Nov 1;23(17):1894–1902. doi: 10.1177/2047487316664190
- 22. Akhu-Zaheya LM, Shiyab WY. The effect of short message system (SMS) reminder on adherence to a healthy diet, medication, and cessation of smoking among adult patients with cardiovascular diseases. Int J Med Inf 2017 Feb 1;98:65–75. doi: 10.1016/j.ijmedinf.2016.12.003
- 23. Jones AR, Moser DK, Hatcher J. Using text messages to promote health in African-Americans: #HeartHealthyandCancerFree*. Ethn Health Taylor & Francis; 2018 Apr 3;23(3):307–320. PMID:27897049
- 24. Morawski K, Ghazinouri R, Krumme A, Lauffenburger JC, Lu Z, Durfee E, Oley L, Lee J, Mohta N, Haff N, Juusola JL, Choudhry NK. Association of a Smartphone Application With Medication Adherence and Blood Pressure Control: The MedISAFE-BP Randomized Clinical Trial. JAMA Intern Med 2018 Jun 1;178(6):802. doi: 10.1001/jamainternmed.2018.0447
- 25. Santo K, Hyun K, de Keizer L, Thiagalingam A, Hillis GS, Chalmers J, Redfern J, Chow CK. The effects of a lifestyle-focused text-messaging intervention on adherence to dietary guideline recommendations in patients with coronary heart disease: an analysis of the TEXT ME study. Int J Behav Nutr Phys Act 2018 May 23;15(1):45. doi: 10.1186/s12966-018-0677-1
- 26. Beratarrechea A, Abrahams-Gessel S, Irazola V, Gutierrez L, Moyano D, Gaziano TA. Using mHealth Tools to Improve Access and Coverage of People With Public Health Insurance and High Cardiovascular Disease Risk in Argentina: A Pragmatic Cluster Randomized Trial.

- J Am Heart Assoc Wiley; 2019 Apr 16;8(8):e011799. doi: 10.1161/JAHA.118.011799
- 27. Brasier N, Raichle CJ, Dörr M, Becke A, Nohturfft V, Weber S, Bulacher F, Salomon L, Noah T, Birkemeyer R, Eckstein J. Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). EP Eur 2019 Jan 1;21(1):41–47. doi: 10.1093/europace/euy176
- 28. Dorje T, Zhao G, Tso K, Wang J, Chen Y, Tsokey L, Tan B-K, Scheer A, Jacques A, Li Z, Wang R, Chow CK, Ge J, Maiorana A. Smartphone and social media-based cardiac rehabilitation and secondary prevention in China (SMART-CR/SP): a parallel-group, single-blind, randomised controlled trial. Lancet Digit Health Elsevier; 2019 Nov 1;1(7):e363–e374. PMID:33323210
- 29. Huo X, Krumholz HM, Bai X, Spatz ES, Ding Q, Horak P, Zhao W, Gong Q, Zhang H, Yan X, Sun Y, Liu J, Wu X, Guan W, Wang X, Li J, Li X, Spertus JA, Masoudi FA, Zheng X. Effects of Mobile Text Messaging on Glycemic Control in Patients With Coronary Heart Disease and Diabetes Mellitus. Circ Cardiovasc Qual Outcomes American Heart Association; 2019 Sep;12(9):e005805. doi: 10.1161/CIRCOUTCOMES.119.005805
- 30. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, Talati N, Nag D, Gummidipundi SE, Beatty A, Hills MT, Desai S, Granger CB, Desai M, Turakhia MP, Apple Heart Study Investigators. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med 2019 Nov 14;381(20):1909–1917. PMID:31722151
- 31. Yousuf H, Reintjens R, Slipszenko E, Blok S, Somsen GA, Tulevski II, Hofstra L. Effectiveness of web-based personalised e-Coaching lifestyle interventions. Neth Heart J 2019 Jan 1;27(1):24–29. doi: 10.1007/s12471-018-1200-7
- 32. Zheng X, Spatz ES, Bai X, Huo X, Ding Q, Horak P, Wu X, Guan W, Chow CK, Yan X, Sun Y, Wang X, Zhang H, Liu J, Li J, Li X, Spertus JA, Masoudi FA, Krumholz HM. Effect of Text Messaging on Risk Factor Management in Patients With Coronary Heart Disease. Circ Cardiovasc Qual Outcomes American Heart Association; 2019 Apr;12(4):e005616. doi: 10.1161/CIRCOUTCOMES.119.005616
- 34. Grau-Pellicer M, Lalanza J, Jovell-Fernández E, Capdevila L. Impact of mHealth technology on adherence to healthy PA after stroke: a randomized study. Top Stroke Rehabil Taylor & Francis; 2020 Jul 3;27(5):354–368. PMID:31790639
- 35. Redfern J, Coorey G, Mulley J, Scaria A, Neubeck L, Hafiz N, Pitt C, Weir K, Forbes J, Parker S, Bampi F, Coenen A, Enright G, Wong A, Nguyen T, Harris M, Zwar N, Chow CK, Rodgers A, Heeley E, Panaretto K, Lau A, Hayman N, Usherwood T, Peiris D. A digital health intervention for cardiovascular disease management in primary care (CONNECT) randomized controlled trial. Npj Digit Med Nature Publishing Group; 2020 Sep 10;3(1):1–

- 9. doi: 10.1038/s41746-020-00325-z
- 36. Sengupta A, Beckie T, Dutta K, Dey A, Chellappan S. A Mobile Health Intervention System for Women With Coronary Heart Disease: Usability Study. JMIR Form Res 2020 Jun 3;4(6):e16420. doi: 10.2196/16420
- 37. Coorey G, Peiris D, Scaria A, Mulley J, Neubeck L, Hafiz N, Redfern J. An Internet-Based Intervention for Cardiovascular Disease Management Integrated With Primary Care Electronic Health Records: Mixed Methods Evaluation of Implementation Fidelity and User Engagement. J Med Internet Res 2021 Apr 26;23(4):e25333. doi: 10.2196/25333
- 38. Kang S-H, Baek H, Cho J, Kim S, Hwang H, Lee W, Park JJ, Yoon YE, Yoon C-H, Cho Y-S, Youn T-J, Cho G-Y, Chae I-H, Choi D-J, Yoo S, Suh J-W. Management of cardiovascular disease using an mHealth tool: a randomized clinical trial. Npj Digit Med Nature Publishing Group; 2021 Dec 3;4(1):1–7. doi: 10.1038/s41746-021-00535-z
- 39. Muralidharan S, Ranjani H, Anjana RM, Gupta Y, Ambekar S, Koppikar V, Jagannathan N, Jena S, Tandon N, Allender S, Mohan V. Change in cardiometabolic risk factors among Asian Indian adults recruited in a mHealth-based diabetes prevention trial. Digit Health SAGE Publications Ltd; 2021 Jan 1;7:20552076211039032. doi: 10.1177/20552076211039032
- 40. Feldman K, Duncan RG, Nguyen A, Cook-Wiens G, Elad Y, Nuckols T, Pevnick JM. Will Apple devices' passive atrial fibrillation detection prevent strokes? Estimating the proportion of high-risk actionable patients with real-world user data. J Am Med Inform Assoc 2022 Jun 1;29(6):1040–1049. doi: 10.1093/jamia/ocac009
- 41. Sakakibara BM, Lear SA, Barr SI, Goldsmith CH, Schneeberg A, Silverberg ND, Yao J, Eng JJ. Telehealth coaching to improve self-management for secondary prevention after stroke: A randomized controlled trial of Stroke Coach. Int J Stroke SAGE Publications; 2022 Apr 1;17(4):455–464. doi: 10.1177/17474930211017699
- 42. Cheung NW, Redfern J, Thiagalingam A, Hng T-M, Marschner S, Haider R, Faruquie S, Huben AV, She S, McIntyre D, Cho J-G, Chow CK, Investigators TS. Effect of Mobile Phone Text Messaging Self-Management Support for Patients With Diabetes or Coronary Heart Disease in a Chronic Disease Management Program (SupportMe) on Blood Pressure: Pragmatic Randomized Controlled Trial. J Med Internet Res 2023 Jun 16;25(1):e38275. doi: 10.2196/38275
- 43. Li D-M, Lu X-Y, Yang P-F, Zheng J, Hu H-H, Zhou Y, Zhang L-J, Liu J-M. Coordinated Patient Care via Mobile Phone–Based Telemedicine in Secondary Stroke Prevention: A Propensity Score-Matched Cohort Study. J Nurs Care Qual 2023 Sep;38(3):E42. doi: 10.1097/NCQ.0000000000000693
- 44. Xu L, Tong Q, Zhang X, Yu T, Lian X, Yu T, Falter M, Scherrenberg M, Kaihara T, Kizilkilic SE, Kindermans H, Dendale P, Li F. Smartphone-based gamification intervention to increase physical activity participation among patients with coronary heart disease: A randomized controlled trial. J Telemed Telecare SAGE Publications; 2023 Feb 16;1357633X221150943. doi: 10.1177/1357633X221150943
- 45. Beckie TM, Sengupta A, Dey AK, Dutta K, Ji M, Chellappan S. A Mobile Health Behavior

- 46. Gray R, Indraratna P, Lovell N, Ooi S-Y. Digital health technology in the prevention of heart failure and coronary artery disease. Cardiovasc Digit Health J 2022 Dec 1;3(6, Supplement):S9–S16. doi: 10.1016/j.cvdhj.2022.09.002
- 47. Moshawrab M, Adda M, Bouzouane A, Ibrahim H, Raad A. Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review. Sensors Multidisciplinary Digital Publishing Institute; 2023 Jan;23(2):828. doi: 10.3390/s23020828
- 48. Campanozzi LL, Gibelli F, Bailo P, Nittari G, Sirignano A, Ricci G. The role of digital literacy in achieving health equity in the third millennium society: A literature review. Front Public Health 2023 Feb 20;11:1109323. PMID:36891330
- 49. Zwack CC, Haghani M, Hollings M, Zhang L, Gauci S, Gallagher R, Redfern J. The evolution of digital health technologies in cardiovascular disease research. Npj Digit Med Nature Publishing Group; 2023 Jan 3;6(1):1–11. doi: 10.1038/s41746-022-00734-2
- 50. Gan DZQ, McGillivray L, Han J, Christensen H, Torok M. Effect of Engagement With Digital Interventions on Mental Health Outcomes: A Systematic Review and Meta-Analysis. Front Digit Health Frontiers; 2021 Nov 4;3. doi: 10.3389/fdgth.2021.764079
- 51. Haq I-U, Haq I, Xu B. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. Cardiovasc Diagn Ther AME publishing company; 2021 Jun;11(3):91123–91923. doi: 10.21037/cdt.2020.03.09
- 52. Mohsen F, Al-Saadi B, Abdi N, Khan S, Shah Z. Artificial Intelligence-Based Methods for Precision Cardiovascular Medicine. J Pers Med 2023 Aug 16;13(8):1268. PMID:37623518
- 53. Parsa S, Somani S, Dudum R, Jain SS, Rodriguez F. Artificial Intelligence in Cardiovascular Disease Prevention: Is it Ready for Prime Time? Curr Atheroscler Rep 2024 May 23; doi: 10.1007/s11883-024-01210-w