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Abstract

Background: The use of Large Language Models (LLMs) as writing assistance for medical professionals is a promising
approach to reduce the time required for documentation, but there may be practical, ethical, and legal challenges in many
jurisdictions complicating the use of the most powerful commercial LLM solutions.

Objective: In this study, we assess the feasibility of using non-proprietary LLMs of the Generative Pretrained Transformer
(GPT) variety as writing assistance for medical professionals in an on-premise setting with restricted compute resources,
generating German medical text.

Methods: We train four 7B parameter model variants for our task and evaluate their performance using a powerful commercial
LLM, namely Anthropic’s Claude-v2 as a rater. Based on this, we select the best performing model and evaluate its practical
usability with two independent human raters on real world data.

Results: In the automated evaluation with Claude-v2 BLOOM-CLP-German, a model trained from scratch on German text,
achieved the best results. In the manual evaluation by human experts, 95 of the 102 reports generated by that model were
evaluated as usable as is or with only minor changes by both human raters (93.1%).

Conclusions: The results show that even with restricted compute resources it is possible to generate medical texts that are
suitable for documentation in routine clinical practice, but that language issues need to be considered when processing non-
English text.
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Abstract
Background:  The  use  of  Large  Language  Models  (LLMs)  as  writing  assistance  for  medical
professionals is a promising approach to reduce the time required for documentation, but there may
be practical, ethical, and legal challenges in many jurisdictions complicating the use of the most
powerful commercial LLM solutions.

Objective: In this study, we assess the feasibility of using non-proprietary LLMs of the Generative
Pretrained  Transformer  (GPT)  variety  as  writing  assistance  for  medical  professionals  in  an  on-
premise setting with restricted compute resources, generating German medical text. 

Methods: We train four 7B parameter four models with three different architectures for our task and
evaluate their performance using a powerful commercial LLM, namely Anthropic’s Claude-v2 as a
rater. Based on this, we select the best performing model and evaluate its practical usability with two
independent human raters on real world data.

Results: In the automated evaluation with Claude-v2 BLOOM-CLP-German, a model trained from
scratch on German text, achieved the best results. In the manual evaluation by human experts, 95 of
the 102 reports generated by that model were evaluated as usable as is or with only minor changes by
both human raters (93.1%).

Conclusions: The results show that even with restricted compute resources it is possible to generate
medical texts that are suitable for documentation in routine clinical practice. However, the target
language should be considered in the model selection when processing non-English text.

Keywords: Large Language Models; medical documentation; writing assistance for physicians
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1) Introduction

1.1 Background

Physicians are often overloaded with documentation requirements, including writing a doctor’s note,
a summary of a patient’s visit. An analysis of clinical software log files showed that interaction with
Electronic  Health  Records  (EHR)  constitutes  a  large  portion  of  physicians’  daily  work,
approximately  a  fourth  of  which  is  spent  writing  documentation  [1].  Completion  of  the
documentation in the EHR is perceived as a tedious task, which is often done after work hours [1].
More time spent on documentation in after work hours has been shown to be associated with burnout
and decreased work-life satisfaction [2].

A promising  approach  to  reduce  the  time  required  for  documentation  is  the  use  of  writing
assistance  based on Large  Language Models  (LLMs).  In  a  feasibility  study,  the  authors  trained
previous generation LLMs (GPT-2 and GPT-Neo) to complete  text  in  medical records [3].  They
concluded  that  the  models  could  be  used  in  medical  charting,  but  still  have  some  room  for
improvement.  A large  source  of  error  were  abrupt  changes  in  the  topic,  which  is  common  in
documentation of EHRs.

With  recent  advances  in  LLM  technology  and  the  release  of  ChatGPT,  LLMs  have  seen
widespread adoption in assisting professionals produce text for communication or documentation
purposes.  For  example,  under  the  Copilot  brand,  Microsoft  is  building  generative  artificial
intelligence (AI) capabilities into their widely used Office application suite to assist in business use
cases. This leads us to believe that current generation LLMs could also provide valuable assistance in
the healthcare sector.

1.2 Challenges in the Use of LLMs in the Healthcare Sector

Among the best  performing LLMs according to the continuously updated Holistic Evaluation of
Language  Models  (HELM)  [4]  at  Stanford  University  are  currently  commercial  offerings  from
companies such as OpenAI or Anthropic. With these offerings, the models run on the providers’
infrastructure and are accessible via an application programming interface (API). However, these
services cannot be used in a clinical context without further consideration.

First, in many countries, the services do not meet the legal requirements for processing protected
health information (PHI). In some jurisdictions, legal and regulatory frameworks mandate that data
originating from healthcare providers must be processed within the country’s borders or even on-
premise. This is particularly problematic for European countries, as the European Union’s General
Data Protection Regulation (GDPR) prohibits the transfer of PHI to datacenters in the US, where
most providers are located.

Second, clinical software must be thoroughly validated before it is released to end users, and in
some cases it is even subject to the Medical Device Regulation. This conflicts with the update policy
of providers of commercial AI solutions. The scope of model updates is usually communicated only a
few weeks in advance, for example, two weeks in the case of OpenAI [5]. This would not be a
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problem if these updates were only additive in functionality, but the opaque nature of current LLMs
also means that improvements to some aspects of model performance might unexpectedly negatively
affect  the performance on other tasks [6].  The use of fixed model versions,  as offered by some
providers, is not practicable in the long term, as older models are often removed after the release of
updates; in the case of OpenAI after three months [5].

1.3 Training Non-Proprietary AI Models for Medical Text

An alternative is the use of non-proprietary AI models. In these models, the architecture as well as
the trained parameters are available to the user. This solves the aforementioned problems by giving
the user the option to train and deploy these models on any infrastructure and fully control any
changes to it.

One of the largest pre-trained LLMs is Generative Pretrained Transformer (GPT) models that
enable model training with limited datasets. There are several approaches to applying GPT models to
a task. One common approach is to use a very large model that is trained primarily with general text
corpora and include instructions for the task in the input for the model, the so-called prompt. This is
sometimes called incontext learning (ICT) or, depending on whether examples are provided, zero-
shot or few-shot learning.

ICT works reasonably well on tasks that have a good representation in the base models’ training
corpus. However,  the structure and content of clinical notes differ significantly from the general
purpose text corpora used to train most publicly available LLMs. Even including biomedical text
from publications, such as PubMed articles, in the training data could only have minor effects on
model performance compared to training on clinical text [7–9]. In [9] the authors compare ICT and
multiple alternatives such as: (a) training from scratch on a clinical corpus, (b) continuing training a
pre-trained model  on  clinical  text  and then  fine-tuning  for  the  downstream task,  or  (c)  directly
training the GPT for the downstream task without further pre-training. They show that relatively
small  specialized clinical  models substantially  outperform all  in-context  learning approaches and
conclude that pretraining on clinical text allows for smaller, more parameter-efficient models.

One fact that must be taken into account when using GPT models in a clinical context is that the
pre-trained models have now become very large. Complete finetuning, in which all model parameters
are  re-trained  on  the  task-specific  data,  is  therefore  becoming  less  and  less  feasible.  This  is
particularly the case if the models have to be trained on site for legal and/or economic reasons. The
computing power available here is usually limited, which restricts the size of the models that can be
trained. Accordingly,  the choice of models is a trade-off between training time and costs, model
accuracy, and maximum sequence length.

One possibility to address the problem of limited working memory is the Low Rank Adaptation
(LoRA) technique [10]. Here, all the model weights are frozen and only a few very small additional
low rank matrices are added to the query and key parameter matrices of the transformer attention
heads and subsequently optimized. This reduces the number of trainable parameters by 10,000 times
and  the  GPU memory  requirement  by  3  times.  Recently,  training  of  quantized  models  became
possible  by combining LoRA with quantization  [11].  With QLoRA a frozen quantized model  is
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finetuned by optimizing added low-rank adapters at  16 bit  floating-point precision.  The QLoRA
technique also introduced additional  memory saving mechanism such as  the 4 bit  Normal  Float
(NF4) data type for quantization and paged optimizers [11].

1.4 Aim of the Study

In this study we assess the feasibility of using non-proprietary LLMs of the Generative Pretrained
Transformer (GPT) variety as writing assistance for medical professionals in an on-premise setting
with restricted compute resources, generating non-English medical text. We train four models with
three different architectures for our task using the HuggingFace Transformers framework [12] and
explore their performance using a powerful commercial LLM, namely Anthropic’s Claude-v2 as a
rater. Based on this, we select the best performing model and evaluate its practical usability with two
independant human raters on real world data.

2) Methods
The study was implemented in the outpatient clinic of the Eye Center at Medical Center, University
of  Freiburg,  Germany  and  approved  by  the  responsible  ethical  review  committee  (registration
number: 23-1444-S1). 

The  target  for  assistive  text  generation  was  the  final  part  of  the  medical  documentation  of  an
examination or treatment, the so-called epicrisis report. In this report, the doctors write a structured
compilation of the information so far documented in the EHR in text form. It contains the relevant
medical information of the case and usually consists of three sections: (1) main diagnosis or the
patient’s reason for visit, (2) therapeutic procedures and/or medication, and (3) recommendations for
further intervention and/or need for a follow-up appointment.

2.1 Data

2.1.1 Data Source and Description

The  data  pool  used  for  training  the  models  were  the  EHR  records  of  82.482  unique  patient
encounters that span approximately 10 years of clinical practice. The EHR record of an encounter
contains all digital information about a patient's examination or treatment in the outpatient clinic,
which offers specialist, emergency and follow-up care. The data is collected in various ways over the
patient's  visit.  Support  staff  record  basic  information  in  structured  forms,  doctors  document  the
medical history, symptoms and previous or planned treatments in text notes, and diagnostic data from
electronic devices is mainly stored in numeric format. The final epicrisis report consists of a stand-
alone text, which is filed alongside all other information in the EHR record. 

The  whole  training  dataset  amounts  to  approximately  140  MB of  uncompressed  text  in  UTF-8
encoding or approx. 29M to 33M tokens, depending on the tokenizer model used. A data set of 509
patient encounters that occurred after the training set date cutoff was set aside for comparison of
model performance in the evaluation. The complete data set consists of German text. The examples
used in this paper were translated into English by the authors of the paper.
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2.1.2 Preprocessing and Formatting

For the LLM training all available data in the EHR record were concatenated into one continuous
text sequence per encounter. The types of information were separated by newlines and prefixed with
a  descriptor  such  as  ’History’ or  ’Pressure  Measurement’ to  form  the  prompt.  If  no  data  was
documented in a section, it was left empty. The order of sections matched the order in which the
fields are displayed to users in the EHR software interface. The last section of each text sequence
was the epicrisis report.  If there were separate records for each eye,  the individual records were
additionally prefixed with an abbreviation indicating the side.

Task training was implemented by inserting special tokens to mark the text to be generated by the
final models, i.e. the epicrisis report. Each text sequence starts with a special token indicating the
beginning of the input data recorded during the patient visit, i.e. all other information in the EHR
record.  A second special  token is  inserted before the epicrisis  report,  indicating the start  of  the
generation task.  In the training data,  this  token is  followed by the actual report  of the attending
physician. The text sequence ends with a "Stop of Sequence" token, which indicates that the model
should end the generation process.

For instruction tuned models the text sequence was prefixed with a so-called system message
enclosed in special  tokens indicating instructions for the model,  reading as follows: ’You are an
experienced doctor in a German eye hospital. Your writing style is concise, accurate, and respectful.
You are writing a short note in German to a colleague about a patient. The letter should contain the
provided information.’

2.2 Models

In the selection of models from openly available pretrained models, we considered hardware cost,
feasibility of the training process, language aspects, and performance benchmark results, such as
Stanford’s  HELM [4]  and  the  Open  LLM  Leaderboard  on  HuggingFace  [13].  Most  LLMs are
predominantly trained in English texts, and currently there is no model that contains a greater amount
of medical text. Consequently, we chose the following three models:

LLaMA At the start of this study, Meta AI’s LLaMA model was among the top performers on several
open LLM benchmarks. In contrast to some of its competitors, its training corpus also contains some
German text, but no clinical content [14]. Since then, more powerful models have been released, but
LLaMA still achieves competitive results on many benchmarks.

LLaMA-2-Chat  During our experiments Meta AI released the successor to LLaMA [15]. Together
with the updated base model,  they also released an instruction-tuned model aligned with human
preferences using reinforcement learning, similar to how ChatGPT was based on GPT-3 [16]. We
chose this model to investigate the potential advantage of using an instruction-tuned model.

BLOOM-CLP-German  This  model  is  designed  for  tasks  in  German,  based  on  the  BLOOM
architecture from [17].  It  was  initialized with the novel  Cross  Lingual  and Progressive Transfer
Learning (CLP)  technique  [18],  which  uses  information  from a  small  model  trained in  a  target
language and a larger model in a source language. This considerably reduces the training needed to
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achieve performance on par with that of a model trained from scratch. Although the model is still
severely  undertrained  for  its  size[19],  we  included  it  to  study  the  potential  performance  gains
achieved by a model with a training corpus closer to the target text material.

2.3 Training

We restrict our training setup to 8x NVIDIA RTX 3090 24 GiB consumer grade GPUs in a single
host. We load and train our models using the ’transformers’ Python library by HuggingFace [12] with
the PyTorch [20] backend. Data are preprocessed employing HuggingFace’s ’datasets’ Python library
[21]. Distributed training on multiple GPUs is implemented via the ’accelerate’ Python library [22].

For each training process, we randomly sample 5% of the training data as validation data. We
regularly evaluate training loss on the validation set during training, about 20 times per epoch. We
stop training when the validation loss does not improve in 10 evaluation steps.  This amounts to
around 13 epochs for most models.

2.3.1 Memory Optimization

For fine-tuning the model for our task we employ the LoRA at full 16 bit precision and QLoRA[11]
at reduced Normal Float 4bit (NF4) precision techniques. Reducing the precision also reduces the
memory usage and allows for longer input text sequences with the available memory. With this, we
explore the trade-off between computational precision and input context size.

Additionally, we use two methods to trade reduced memory requirements for computation time.
First, we use gradient checkpointing, a technique that recomputes some network activations during
the  backward  pass  on  the  fly  instead  of  caching  them  in  memory.  Second,  we  use  the  Zero
Redundancy  Optimizer  (ZeRO)  technique  [23],  which  includes  memory  savings  achieved  by
reducing redundancy when training on multiple GPUs, as well as offloading some tasks to the CPU,
both at the cost of communication overhead. Both make the training process considerably slower, but
should not impact task performance of the resulting model.

Specifically, we trained the following model variants:

• LLaMA with LoRA at FP16 precision

• LLaMA 2 Chat with QLoRA at NF4 precision

• BLOOM-CLP German with QLoRA at NF4 precision

• BLOOM-CLP German with LoRA at FP16 precision

2.4 Inference

At their core, the decoder part of the Transformer architecture models a probability distribution for
the next token given a sequence of input tokens. Both, the composition of the initial input tokens and
the method of choosing the next token from the produced probability distribution can have a big
impact on the quality of the final result.
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2.4.1 Completion Prefixing

At inference time, the model receives an input text sequence, often called the prompt. It consists of
the  input  data,  as  described  in  section  2.1.2,  followed  by  a  special  token  indicating  that  the
subsequent text should be an epicrisis report. In other words, the model receives a text sequence
containing all information from an EHR record except for the attending physician's epicrisis report
and is asked to write this report, i.e. to generate a text that corresponds in content, structure and form
to the epicrisis reports included in the training data. However, in the qualitative analysis of our initial
findings, we found that in some cases the models attempted to continue with the recorded data rather
than start writing a final report. 

In an effort to improve results without retraining our models, we introduce a simple form of prompt
tuning by adding a static suffix to the prompt, i.e. forcing the model to begin the generated text with
the words ’During today’s visit...’. This suffix represents the typical beginning of the epicrisis report,
as almost all reports written by doctors in the training dataset start with some variation of these
words. We hope that this gives the models an additional signal to complete the text with a summary
and recommendations instead of trying to invent more ’facts’ about the patient’s stay. We report and
compare the evaluation results on reports generated with and without the completion prefix.

2.4.2 Contrastive Search

For a given input sequence, the trained transformer model produces a probability distribution for the
next token. Simply choosing the token with the highest probability often produces text that lacks
coherence and diversity. Techniques that maximize the probability over multiple tokens (e.g., beam
search)  or  stochastic  sampling  can  enhance  coherence  and  diversity  but  are  not  targeted  at  the
problem of repetition that is common to the type of highly standardized text generated in this study.
We therefore employ a more recently introduced technique, called Contrastive Search, which has
been shown to encourage diversity and produce coherent results while reducing repetitiveness [24,
25].

2.5 Evaluation

Evaluating the quality of generated natural language text using (preferably multiple) human raters is
costly and time-consuming. Especially if the rating process requires specialized domain knowledge,
like in this study. On the other hand, there is no obvious way to automate this process. An interesting
idea is  to use larger  and more powerful  language models to  rate the quality of the output.  This
technique has recently been employed in some publications in the LLM space, for example in the
creation of the LLaMA-2 model and in evaluating the performance of QLoRA training [11, 15].
Large commercial language models such as OpenAI’s GPT-4 and Anthropic’s Claude-v1 model have
been shown to achieve agreement rates with human raters of up to 80% when evaluating the output
of other models [26].

2.5.1 Automated Evaluation with Claude-v2

We evaluate the generated text in a two-step process using Claude-v2 by comparing the generated
text to the epicrisis reports that were written by physicians for 509 individual patient encounters. In
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the first step, we extract the text passages that contain relevant information for each of the three main
categories of information: (1) main diagnosis or patient’s reason for visit, (2) therapeutic procedures
and/or medication, and (3) recommendations for further intervention and/or need for a follow-up
appointment. In a second step, for each case and category separately, we ask Claude to evaluate
whether the extracted passage from the generated report  matches the passage extracted from the
report written by a human.

2.5.2 Human Evaluation

The suitability of the generated text by the best performing model is evaluated by two independent
expert  senior physicians.  For this  purpose,  the raters are  presented with the basic data from the
documentation of 102 patients as well as both versions of the report: the one written by the attending
physician and the computer-generated version.  The raters assess whether the computer-generated
version is suitable as a text template and could be used without major changes.

3) Results

3.1 Model Performance

Table 1 shows the percentage of reports in the test set in which the models matched the extracted
diagnosis, follow-up, and therapy recommendation. The highest agreement rates with reports written
by  a  doctor  were  achieved  by  the  BLOOM-CLP-German  model,  followed  by  LLaMA-2  and
LLaMA. The ranking was consistent across all the diagnosis, follow-up, and therapy dimensions. On
average, the models achieved the highest scores in the diagnosis dimension followed by the therapy
and follow-up dimensions.

Table 1 Fraction of reports in the test set where the models match the information extracted from the
text written by a doctor. 

Model bloom-
clpfp1

6

bloo
m

clpfp
16

prefix

bloo
m

clpql
ora

bloom
clpqlo

ra
prefix

llama-
2 qlora

llam
a2

qlora
prefi

x

llama
fp16

llama
fp16

prefix

Mean

Category

Diagnosis
50.10

%
44.01

%
55.40

%
45.78

%
34.38

%
32.81

%
31.24

%
16.50

%
38.78

%
Follow-
Up 

41.45
%

32.02
%

43.42
%

33.79
%

36.94
%

31.24
%

34.97
%

21.02
%

34.36
%

Therapy 
43.81

%
37.33

%
50.69

%
42.44

%
36.54

%
36.35

%
29.67

%
13.95

%
36.35

%

Mean
45.12

%
37.79

%
49.84

%
40.67

%
35.95

%
33.46

%
31.96

%
17.16

%

Of the BLOOM-CLP-German variants trained with full floating point 16-bit precision LoRA and
reduced NF4 integer precision QLoRA the latter achieved slightly higher agreement rates (see Figure
1).  In contrast  to our intuition,  prefixing the model prompt at  inference time (see section 2.4.1)
slightly reduced the performance across all models rather than improving it.
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Figure  1  Fraction  of  reports  in  the  test  set  where  the  models  matched the  extracted  diagnosis,
followup, and therapy recommendation of the doctor. All data are extracted using Claude-v2 (see
section 2.5.1). For some models variants are trained using either full floating point 16-bit precision
LoRA, indicated by the suffix ’fp16’ in the legend, or using NF4 integer precision QLoRA, indicated
by the suffix ’qlora’. For all models we generate and evaluate two times: once using the standard
prompt and once using a completion prefix (see section 2.4.1), indicated by the word ’prefix’ in the
figure legend.

3.2 Human Evaluation

A total of 102 reports generated by the BLOOM-CLP German model trained with QLoRA at NF4
precision  were  rated  for  suitability  by  two independent  expert  senior  physicians.  95  of  the  102
reports were evaluated as suitable by both raters (93. 1%), which means that computer-generated
reports could be used in this form or with minor changes. Only seven of the reports (6.9%) were
rated  as  unsuitable  by  at  least  one  of  the  raters.  Cohen’s  κ was run  to  determine  the  interrater
reliability. There was moderate agreement between the two physicians’ judgments, κ = .582 (95% CI,
.217 to .947), p < .001.

The 7 reports that were rated as unsuitable show different anomalies. In three of the reports, the
model was caught in a loop of repeating nonsensical word sequences, for example, “we recommend
local therapy with Bepanthen eye ointment 5x daily on both sides for 5–7 days, then 1x daily on both
sides for 5–7 days, then 1x daily on both sides for 5–7 days, then 1x daily on both sides for 5-7 days,
etc.” (26 repetitions). In one case, there is no text output because the patient’s appointment did not
take place. Only in three reports are content-related aspects decisive. In one case, the main diagnosis
is not mentioned, in one case information is missing in the treatment recommendation, and in one
case the time given for the follow-up appointment is incorrect.

4) Discussion
Despite being severely undertrained compared to both LLaMA models, the BLOOMCLP-German
model achieved the best performance in our experiments. This suggests that a better alignment of the
base model with the reports’ language might be more important than a longer training time. We
speculate that the German vocabulary in the model’s tokenizer better captured domain semantics
compared to the multilingual tokenizers. Additionally, the model might have profited from a larger
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maximum input sequence length given the limited memory. This is an effect of the smaller token per
character ratio of a tokenizer with a better alignment to the text’s language.

Because its vocabulary is closer to our data, BLOOM-CLP-German’s tokenizer encodes up to
30% fewer tokens for the same input text compared to LLaMA’s tokenizer. This means that we can
fit more information into the context window, training, and inference consume about half as much
memory, and inference is about twice as fast. This makes for significant cost reductions compared to
models with a multi-language tokenizer.

Of both BLOOM variants trained with LoRA and reduced QLoRA precision, the latter performed
better in our analysis. This suggests that the reduced precision is more than offset by the bigger
maximum input  sequence length given the memory constraints.  We surmise that  capturing more
context in the model input outweighs compute-optimal training or precision.

In contrast to our intuition, forcing the models to start the generated text with a predefined prefix
did  not  improve  the  results.  We  speculated  from  our  manual  testing  that  this  technique  might
eliminate some edge cases where the models sometimes start generating text completely unrelated to
the input sequence. While this might still be true, the prefix also might have impacted the models’
ability to flexibly react to the input. Therefore, reducing quality in more cases than improving it.

4.1 Feasibility of non-proprietary on-site AI

Our manual evaluation clearly shows that it is possible to provide helpful writing assistance using
non-proprietary on-site AI technologies. Most of our test samples were rated useful as is or with only
minor  modifications.  Additionally,  qualitative analysis  of  samples rated as unusable showed that
these were edge cases where the model produced no output or text that was easily identifiable as an
anomaly.  Only in  very few reports  were content-related aspects  decisive,  i.e.  the model  omitted
major details or produced factually incorrect information.

While  legal  and  ethical  concerns,  as  discussed  in  section  1.2,  currently  may  prevent  many
healthcare providers in  European countries from using proprietary AI assistance for  charting the
solution presented in this study should be feasible for most of them. Non-proprietary models allow
for flexible model deployment to comply with data protection requirements. Full control over the
model  also  addresses  legal  concerns  regarding software  certification  and some ethical  concerns,
because these models can be more easily inspected regarding potential biases.

In this study we chose model sizes around 7B parameters. In comparison, GPT3, the model that
powered the first version of ChatGPT, has 175B parameters. With careful optimization of trade-offs
between training time and cost, model precision, and maximum sequence length, we show that it is
still possible to provide helpful writing assistance even with a much smaller model. At our chosen
model scale operating, the models should be economically accessible to many healthcare providers or
local  service  providers  making  it  easier  to  comply  with  local  regulation  and  reducing  possible
dependence on external or foreign service providers.

4.2 Limitations

Due to the limited availability of compute time, we were unable to test all combinations of model and
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training  modalities.  LLaMA-2  was  only  trained  using  QLoRA and  LLaMA only  using  LoRA,
limiting possible comparisons between the base models. Similarly, we only included the instruction-
tuned variant of LLaMA-2 and cannot compare to the base model without instruction tuning.

The limited training of the BLOOM model probably affected its accuracy. On the flip side, this
limitation  highlights  the  importance  of  the  language  alignment  with  the  under-trained  BLOOM
model outperforming both LLaMA models.

While  our  human  raters  evaluated  our  chosen  model’s  outputs  favorably,  this  happened  in
dedicated research settings. It remains to be shown whether AI writing assistance is still perceived as
helpful in a real clinical setting or if the additional mental load caused by having to check the AI’s
output outweighs its usefulness.

5) Conclusions
In conclusion,  this  work demonstrates  the  feasibility  of  localized  AI  assistance  for  clinical  note
generation  using  small-scale  non-proprietary  models.  Our  results  highlight  the  advantages  of
language-specific model tuning, providing a promising direction for future research. Especially when
considering the significant speed and cost advantages of the language-specific model.

5.1 Future Work

Moving forward, leveraging German clinical corpora for pretraining could provide useful in-domain
semantics. Techniques such as CLP fine-tuning can enable the utilization of such data with lower
compute requirements. In a future study, we will explore the usage of our models in a real world
setting.
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LLMs Large Language Models 
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(Q)LoRA (Quantized) Low Rank Adaptation
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Fraction of reports in the test set where the models matched the extracted diagnosis, followup, and therapy recommendation of
the doctor. All data are extracted using Claude-v2 (see section 2.5.1). For some models variants are trained using either full
floating point 16-bit precision LoRA, indicated by the suffix ’fp16’ in the legend, or using NF4 integer precision QLoRA,
indicated by the suffix ’qlora’. For all models we generate and evaluate two times: once using the standard prompt and once
using a completion prefix (see section 2.4.1), indicated by the word ’prefix’ in the figure legend.
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