

Enhancing patient understanding of laboratory test results: a systematic review of presentation formats and their impact on perception, decision, action, and memory

Frederieke A.M. van der Mee, Fleur Schaper, Jesse Jansen, Judith A.P. Bons, Steven J.R. Meex, Jochen W.L. Cals

Submitted to: Journal of Medical Internet Research on: October 26, 2023

Disclaimer: © **The authors. All rights reserved.** This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.

Table of Contents

Original Manuscript	5
Supplementary Files	
Figures	
Figure 1	
Figure 2	
Multimedia Appendixes	
Multimedia Appendix 1	40
Multimedia Appendix 2	
Multimedia Appendix 3	
Multimedia Appendix 4	40
CONSORT (or other) checklists	41
CONSORT (or other) checklist 0	41

Enhancing patient understanding of laboratory test results: a systematic review of presentation formats and their impact on perception, decision, action, and memory

Frederieke A.M. van der Mee^{1*} MD; Fleur Schaper^{2, 3*} PhD; Jesse Jansen¹ PhD; Judith A.P. Bons² PhD; Steven J.R. Meex² PhD; Jochen W.L. Cals¹ MD, Prof Dr

Corresponding Author:

Frederieke A.M. van der Mee MD
Department of Family Medicine
Care and Public Health Research Institute
Maastricht University
P. Debyeplein 1
Maastricht
NL

Abstract

Background: Direct access of patients to their electronic health records, including laboratory test results, has become increasingly common. Laboratory results can be challenging to interpret by patients, which may lead to anxiety, confusion, and unnecessary doctor consultations. Laboratory results can be presented in different formats, but there is limited evidence about the effect of presentation formats on patient outcomes.

Objective: To synthesize the evidence on effective formats for presenting laboratory test results with a focus on patient outcomes, including affective perception, perceived magnitude, cognitive perception, perception of communication, decision, action, and memory.

Methods: The search was conducted in three databases (PubMed, Web of Science, and EMBASE), until May 31st, 2023. We included quantitative, qualitative, and mixed methods articles describing or comparing formats for presenting diagnostic laboratory test results to patients. Two reviewers independently extracted and synthesized characteristics of the articles and presentation formats used. Quality of the included articles was assessed by two independent reviewers by using the Mixed Methods Appraisal Tool.

Results: Eighteen studies were included, which were heterogeneous in terms of study design and primary outcomes used. Quality of the articles ranged from poor to excellent. Most studies (n = 16/18) used mock test results. The most frequently used presentation formats were numerical values with reference ranges (n = 12/18), horizontal line bars with colored blocks (n = 12/18), or a combination of horizontal line bars with numerical values (n = 8/18). All studies examined perception as a patient outcome, while action and memory were studied in one and three articles, respectively. In general, participants' satisfaction and usability were highest when test results were presented using horizontal line bars with colored blocks. Adding reference ranges or personalized information (e.g. goal ranges) further increased participants' perception. Additionally, horizontal line bars significantly decreased participants' tendency to search for information or to contact their physician, compared to numerical values with reference ranges.

Conclusions: In this review, we synthesized available evidence on effective presentation formats for laboratory test results. The use of horizontal line bars with reference ranges or personalized goal ranges increased participants' cognitive perception and perception of communication, while decreasing participants' tendency to contact their physician. Action and memory were less frequently studied, so no conclusion could be drawn about a single preferred format regarding these outcomes. Further research should focus on real-life settings, diverse presentation formats and patient outcomes. Eventually, the overarching objective is to facilitate the development of tools to effectively communicate laboratory test results to patients in clinical practice.

¹Department of Family Medicine Care and Public Health Research Institute Maastricht University Maastricht NL

²Central Diagnostic Laboratory Maastricht University Medical Center+ Maastricht NL

³Department of Clinical Chemistry Reinier Medical Diagnostic Center Delft NL

^{*}these authors contributed equally

(JMIR Preprints 26/10/2023:53993)

DOI: https://doi.org/10.2196/preprints.53993

Preprint Settings

- 1) Would you like to publish your submitted manuscript as preprint?
- ✓ Please make my preprint PDF available to anyone at any time (recommended).

Please make my preprint PDF available only to logged-in users; I understand that my title and abstract will remain visible to all users. Only make the preprint title and abstract visible.

- No, I do not wish to publish my submitted manuscript as a preprint.
- 2) If accepted for publication in a JMIR journal, would you like the PDF to be visible to the public?
- ✓ Yes, please make my accepted manuscript PDF available to anyone at any time (Recommended).

Yes, but please make my accepted manuscript PDF available only to logged-in users; I understand that the title and abstract will remain very Yes, but only make the title and abstract visible (see Important note, above). I understand that if I later pay to participate in <a href="https://example.com/above/participate-in-very make-in-very make

Original Manuscript

Enhancing patient understanding of laboratory test results: a systematic review of presentation formats and their impact on perception, decision, action, and memory

FAM van der Mee*1, F Schaper*2,3, J Jansen1, JAP Bons3, SJR Meex3, JWL Cals1

* authors contributed equally

¹ Department of Family Medicine, Care and Public Health Research Institute, Maastricht University,

Maastricht, The Netherlands,

² Department of Clinical Chemistry, Reinier Medical Diagnostic Center, Delft, the Netherlands.

Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, the

Netherlands.

Corresponding author:

Frederieke AM van der Mee

Address: P. Debyeplein 1, 6229 HA Maastricht, the Netherlands

Telephone: +31883887059

Email: frederieke.vandermee@maastrichtuniversity.nl

Abstract

Background: Direct access of patients to their electronic health records, including laboratory test results, has become increasingly common. Laboratory results can be challenging to interpret by patients, which may lead to anxiety, confusion, and unnecessary doctor consultations. Laboratory results can be presented in different formats, but there is limited evidence about the effect of presentation formats on patient outcomes.

Objective: To synthesize the evidence on effective formats for presenting laboratory test results with a focus on patient outcomes, including affective perception, perceived magnitude, cognitive perception, perception of communication, decision, action, and memory.

Methods: The search was conducted in three databases (PubMed, Web of Science, and EMBASE), until May 31st, 2023. We included quantitative, qualitative, and mixed methods articles describing or comparing formats for presenting diagnostic laboratory test results to patients. Two reviewers independently extracted and synthesized characteristics of the articles and presentation formats used. Quality of the included articles was assessed by two independent reviewers by using the Mixed

Methods Appraisal Tool.

Results: Eighteen studies were included, which were heterogeneous in terms of study design and primary outcomes used. Quality of the articles ranged from poor to excellent. Most studies (n = 16/18) used mock test results. The most frequently used presentation formats were numerical values with reference ranges (n = 12/18), horizontal line bars with colored blocks (n = 12/18), or a combination of horizontal line bars with numerical values (n = 8/18). All studies examined perception as a patient outcome, while action and memory were studied in one and three articles, respectively. In general, participants' satisfaction and usability were highest when test results were presented using horizontal line bars with colored blocks. Adding reference ranges or personalized information (e.g. goal ranges) further increased participants' perception. Additionally, horizontal line bars significantly decreased participants' tendency to search for information or to contact their physician, compared to numerical values with reference ranges.

Conclusions: In this review, we synthesized available evidence on effective presentation formats for laboratory test results. The use of horizontal line bars with reference ranges or personalized goal ranges increased participants' cognitive perception and perception of communication, while decreasing participants' tendency to contact their physician. Action and memory were less frequently studied, so no conclusion could be drawn about a single preferred format regarding these outcomes. Further research should focus on real-life settings, diverse presentation formats and patient outcomes. Eventually, the overarching objective is to facilitate the development of tools to effectively communicate laboratory test results to patients in clinical practice.

Keywords: electronic health record; patient access to records; patient portal; laboratory test results; clinical laboratory information systems; health communication; health informatics; patient engagement; patient involvement

Introduction

An increasing number of patients have direct access to their own electronic health record (EHR). This includes diagnostic test results ordered by their health care professional, such as laboratory test results [1, 2]. Providing patients online access to EHRs aims to increase patient involvement in their health management. Improving patients' knowledge and self-efficacy may enhance disease self-management, interactions with health care providers and ultimately lead to better health outcomes and increased satisfaction with care [3-6].

However, patient access to EHRs also has potentially negative consequences. For example, misinterpretation or inaccurate knowledge could lead to underestimation of test results and promote a false sense of security [7]. Similarly, gaining insight into medical test results might trigger feelings of insecurity, anxiety, and confusion [8-12]. Previous studies have shown that poor understanding of test results can lead to an increase in telephone calls or doctor consultations, emergency department visits, and even hospitalizations [13-15]. As a result, the overall utility or benefit of providing lab results directly to patients may depend how these data are presented to and interpreted by the patient [16, 17].

Basic EHRs typically present laboratory test results in a numerical format, often accompanied by a reference range (i.e. the range that represents normal values for a particular test) [10, 18, 19]. Additional information, such as textual explanations or visual cues, is usually not provided. Limited health literacy and numeracy skills are significant barriers to the effective use of EHRs and understanding of laboratory test results [20, 21]. Although patient understanding can be improved to some extent by avoiding medical jargon and using plain language, overcoming the problem of incomprehension in its entirety remains an ongoing challenge [21-23]. As noted above, one of the key issues is the numerical presentation of test results. Especially patients with low numeracy skills (i.e. those with limited ability to derive meaning from numbers) have been shown to have difficulties in interpreting basic laboratory test results and identifying results that fall outside the reference range [20]. The lack of supporting information and guidance on interpretation of results contributes to the problem of misinterpretation. This challenge becomes even more pronounced when a larger number of test results are presented [20]. An alternative approach to communicating test results is the use of visual displays, such as colors or graphics. These formats require less health literacy and numeracy skills for interpretation and may improve patients' understanding of the results [24-28]. Previous studies have examined a variety of presentation formats for communicating laboratory test results.

However, direct comparisons between these studies can be challenging due to the variety of presentation options and clinical contexts. In addition, not all formats may be appropriate for every clinical situation [29].

There is only limited evidence on the effect of specific presentation formats on patient outcomes. As highlighted by Witteman and Zikmund-Fisher, laboratory test results often lack meaning for the patients receiving them [17]. Test results represent data, which differs from information and actual knowledge patients commonly encounter in daily life [30, 31]. Patients have to complete several steps to go from data perception to usable knowledge. Ancker et al. described these steps as well, based on the Wickens model of human information processing [32, 33]. In a sequential order, patients need perception and behavioral intention to achieve actual health behavior. Therefore, it is important that these separate steps, or different patient outcomes, are taken into account when presentation formats are evaluated.

Our systematic review aims to synthesize the existing evidence on effective components of presentation formats for laboratory test results focusing on patients' perception, decision, action, and memory.

Methods

This review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Appendix 1) [34]. A protocol for this review was not previously registered.

Search strategy

The search was conducted in three databases (PubMed, Web of Science, and EMBASE) from inception up to May 31st, 2023. In each database a search was performed, which was developed by the first author (FM) together with an experienced librarian and contained both thesaurus and free text terms. For the search in EMBASE, a filter was applied to remove preprint records and to exclude MEDLINE citations, since the latter were already covered by the PubMed search. Additionally, two authors (FM and FS) performed backward snowballing by screening reference sections of all selected articles to identify relevant publications missed with the search strategy. A fully reproducible search can be found in Appendix 2.

Study selection and eligibility criteria

All identified titles and abstracts were downloaded to reference management software (Endnote) and duplicates were removed. Two authors (FM and FS) independently screened for potential eligible articles using Covidence, a Cochrane's technology platform [35]. First, titles and abstracts were screened against the eligibility criteria. Second, full texts of potentially suitable articles were rescreened using the same criteria. In case of disagreement, consensus was reached by discussion or screening by a third reviewer (JC).

We considered articles fitting for inclusion if they were original research. Studies describing or comparing different ways of presenting diagnostic laboratory test results to patients were included. Furthermore, studies needed to evaluate the effect of communicating test results on patients' comprehensibility, attitudes and/or experiences. Studies conducted in primary care and secondary/tertiary care settings were eligible, as well as studies including healthy volunteers. Studies had to be written in English or Dutch.

Studies were excluded if they:

- 1. Were protocols, reviews, systematic reviews, meta-analyses, book chapters, editorials, letters, practice pointers, oral presentations, or poster presentations.
- 2. Were about development, implementation, or adoption of electronic health records in general, or about the type of notification of laboratory test results, if they did not consider patients' interpretation of the lab results.
- 3. Focused on online access to notes, and not to laboratory test results.
- 4. Did not mention type of presentation format of lab results.
- 5. Focused on the development of web-based lifestyle interventions or online applications to collect patient-reported outcomes.
- 6. Focused on the safety or privacy issues of electronic health records.
- 7. Were about the effect of communicating test results in electronic health records on patients' medication management.
- 8. Tested the effect of test result communication on health care providers.
- 9. Examined communication of other types of diagnostic test results (e.g. (pharmaco)genomics, radiology, pathology, or microbiology).
- 10. Examined communication of test results in the context of screening programs.

Data extraction

Two authors (FM and FS) independently extracted data of the eligible studies into a prepared spreadsheet. The spreadsheet was developed by the multidisciplinary team and piloted by both authors. For each study, year of publication, country in which the study was performed, study design, number of participants, description of the study population, and the inclusion and exclusion criteria were assessed. Furthermore, information about the presentation of test results in the portal, type of laboratory test(s) studied, and whether real or mock data was used, was extracted.

Outcome measures

Previous research regarding this subject focused on a variety of patient outcomes. As stated above, Ancker et al. introduced a taxonomy to categorize different outcome measures when communicating numbers in healthcare [32]. These categories include sequentially; perception, decision/behavioral intention, action/actual health behavior, and memory. Perception is further divided into four subcategories: affective perception, perceived magnitude, cognitive perception, and perception of communication [32, 36, 37]. An explanation of the categorized patient outcome measures can be found in Textbox 1. For this review, outcome measures of each study were extracted and classified into the categories described.

Textbox 1. Explanation of the patient outcome measure categories based on Ancker et al.

- Affective perception: feelings about the laboratory result communicated.
- <u>Perceived magnitude</u>: perceived size of risk associated with a test result, captured with measures as "how large or small does this value seem to you?"
- <u>Cognitive perception</u>: understanding whether a laboratory result is elevated, normal, or below normal. Being able to identify direction of a trend over time.
- <u>Perception of communication</u>: preference for presentation format of test result.
- <u>Decision</u>: intention to seek more information or to change behavior after viewing results.
- Action: change in actual health behavior (e.g. search for more information).
- Memory: recall of a specific test result after viewing (i.e. verbatim recall).

Quality assessment

To assess quality and risk of bias of all included studies, the Mixed Methods Appraisal Tool (MMAT) was used [38]. The MMAT is designed to concomitantly appraise studies with different designs, such

as qualitative, quantitative and mixed methods studies [39]. Question sets are specific to the study design, notably qualitative studies, quantitative randomized controlled trials, quantitative non-randomized studies, quantitative descriptive studies, and mixed methods studies. For each suitable study, the appropriate category was chosen and criteria stated for this specific category were rated as 'yes', 'no', or 'can't tell'.

Two authors (FM and FS) discussed both data and quality extraction until consensus was reached.

Data synthesis

Due to the heterogeneity of study designs and primary outcomes, meta-analysis was considered inappropriate. Instead, narrative synthesis was used to integrate the findings into descriptive summaries regarding ways of presenting laboratory test results and outcomes of interest.

Results

The initial search identified 10,537 references. A total of 3,490 duplicate records were removed. After applying the exclusion criteria in the primary title and abstract screening, another 6,900 records were removed. During full-text screening of the remaining articles (n = 146), it appeared that one full-text was not available. Furthermore, 127 articles were excluded because they did not meet the eligibility criteria. Describing implementation of electronic health records, unrelated to laboratory test results, was the most common exclusion criterion (n = 55, 43.3%) (Figure 1). A total of eighteen studies were found eligible for this systematic review. Cohen's kappa for interrater reliability was 0.62 for title and abstract screening and 0.80 for full-text screening, indicating respectively a moderate and strong agreement between the two reviewers [40].

Study characteristics

Two qualitative studies, eleven quantitative studies, and five mixed methods studies were included (n = 18). The included studies were published between 2012 and 2021, and the majority were conducted in the United States of America (n = 13). The total sample size of the included studies was 12,252 participants, ranging from eight to 6,766 participants. Among the articles reporting the following characteristics, gender was almost equally distributed (52.6% female), and participants were predominantly middle aged (mean 51.1 years) and white (77.6% on average). Fourteen studies reported educational level, with 48.2% of the participants reporting a higher education (defined as

college-degree or higher). Overall characteristics of the included studies and populations are summarized in Table 1.

The most frequently used laboratory tests were lipid profile (n = 10) and HbA1c or glucose (n = 5). In total, three studies used real patients as study population, other studies used healthy volunteers, a convenience sample or a mixed sample (n = 12) or did not define their study population (n = 3). Studies used mock test results (i.e. hypothetical results) (n = 16), real results (n = 1, with real patients), or both (n = 1). The majority of studies used numerical values with reference ranges (n = 12) or horizontal line bars with colored blocks (n = 12) (Table 2). A more detailed overview of the different ways of presenting test results is provided in Appendix 3. An explanation of the different presentation formats can be found in Figure 2.

Figure 1. Flow chart of the study selection process.

Table 1. Study and population characteristics of all included studies (n = 18).

<u>Table 1</u> . (Co	ontinued).								
Bar-Lev									To examine
al. (26 et [46] (2018) [7]	United Kingdom	Non- randomized experimental study	20	Real patients	20	51.8 (10.3)		5 35 60 6 other	different displaysations displaysations designalized madenal maternation laybeasons understanding perceptions, activals
Höllenstein al- al. (2018) [41]	United States of America	Mixed methods study	328	Volunteers	51	46.0 (16.3, 18-90)	66.8% white, 19.6% Hispanic/ Latino/ Spanish, 12.3% black/ African American/ Negro, 4.0% Asian	0 38.2 48.2 13.6% unknown	TO EXPIDENT TELEPTOR IN THE PROPERTY IN THE PR
Elder et Kelmant et (2012) (2016) [48]	United States of America	Survey	211	Convenience sample	90	52.7 (10.0)	89% white, 4% African American, 6% other 0.5% preferred not to answer	0.5 57 41 1% unknown	To explore the street of the s
Morrow et al. (2017) ^b [45]	United States of America	Mixed methods study	36		67	77 (65-89)			A print student settings finalized development video-enhand messages conducting evaluation students.

Table 1. (Continued).

Morrow et al. (2019) ^b [42]	United States of America	Randomized controlled trial	144		71.5	71.9 (60-94)		18.8 13.2 68.0	To investigate to support adult comprehensior and response patient pobased nume information
Nystrom et al. (2018) [53]	United States of America	Mixed methods study	14	Real patients		43 (25-73)			To study patiability to gen meaning from test result and this meaning winform decision maand subsections
Scherer et al. (2018) [43]	United States of America	Randomized controlled trial	6766	Mixed sample	50.9	49.1 (15.8)	78.2% white, 14.8% African America, 9.7% other	2.0 52.2 45.8	To test the in of incluction including appropriate ranges outside standard rang the visual distribution of laboratory results
Struikman et al. (2020) [54]	The Netherlands	Randomized controlled trial	487	Volunteers	50.3	52.8 (15.4)		7.7 45.8 46.4	To disc whether the way presenting by test outcomes electronic pay portal is assoct with patient hengagement whether this wacross different outcomes

Table 1. (Continued).

Talboom- Kamp et al. (2020) [44]	The Netherlands	Survey	354	Real patients					To investig attitudes, experien and self-efficacy patients using online patient po that communical aboratory test resu
Tao et al. (2018) [19]	China	Non- randomized experimental study	72	Convenience sample	58	Young adult group: 22.3 (2.6) Older adult group: 65.8 (3.6)		1.4 33.3 65.3	To examine effects of f graphical formats a age on consum comprehension, perceptions, vis attention, preference of graphs of the use self-monitoring results
Zarcadoolas et al. (2013) [50]	United States of America	Qualitative study	28	Volunteers	64.3	40.0 (12.4, 21-63)	25.0% Hispanic, 3.6% non- Hispanic white, 67.9% non- Hispanic black, 3.6% other	46.4 53.6 0	To iden vulnerable consumers' respo to patient port their perceived uti and value, as well their reactions specific po functions
Zhang et al. (2020) ^b [15]	United States of America	Mixed methods study	203	Volunteers	48.3	63.5% 26- 49	69.5% white, 4.4% Asian/ Pacific islander, 16.7% African American, 5.9% Hispanic/ Latino, 2.0% American Indian, 1.5% other	0 19.7 79.9 0.4% other	To examine challenges and ne of patients who comprehending laboratory test resu

Table 1. (Continued).

Zhang et al. (2021) ^b [49]	United States of America	Mixed methods study	8		50	18-64			To examine to help pat understand connections between medical co and test reand the necesupport actions receiving test results
Zikmund- Fisher et al. (2017) ^c [18]	United States of America	Survey	1620	Volunteers	52.3	48.9 (15.7)	77.4% white, 13.0% African American, 7.0% other	1.9 49.9 48.2	To investigate extent to w different w displays people discriminate between results that do not re urgent action
Zikmund- Fisher et al. (2018) ^c [47]	United States of America	Randomized controlled trial	1618	Volunteers	52.1	48.8 (19- 89)	77.8% white, 13.2% black, 13.2% Hispanic, 4.0% Asian, 0.8% native American 4.3% other/ multirace	0 0 50.1 49.9% unknown	To test the e of including additional anchor refer point in v displays laboratory results

^aLow education: primary school. Middle education: secondary/ high/ trade school, some college. High education: 4 college/ associate/ university/ undergraduate/ Bachelor's/ Master's/ advanced/ professional/ doctorate degree.

^bThe following articles are pilot and main study: Morrow et al. 2017 and 2019, Zhang et al. 2020 and 2021.

^cThe following articles originate from the same parent study: Zikmund-Fisher et al. 2017 and 2018.

Table 2. Laboratory test characteristics and presentation format used in all included studies (n = 18).

Author (year)	Labora	tory test infor	mation and pi	resentation format			
,	Laboratory test	Type of		Presentation	format		
		data	Numerica	Horizontal line bar	Graph	Vide	Tex
		data	1			0	
			1				
Bar-Lev et al. (2020)	Hemoglobin, cholesterol, progesterone	Mock	Х		Х		
Brewer et al. (2012)	Total cholesterol, HDL, LDL	Mock	Х	X			
Elder et al. (2012)	Total cholesterol, HDL, LDL	Mock	Х	X	X		
Fraccaro et al. (2018)	Creatinine, eGFR, potassium	Mock	X	X			
Hohenstein et al. (2018)	Vitamin B12, procalcitonin, cholesterol	Mock	X	X			
Kelman et al. (2016)	Rheumatoid factor	Mock	Х				
Morrow et al. (2017)	Total cholesterol, HDL, LDL, TG, HbA1c	Mock				х	
Morrow et al. (2019)	Total cholesterol, HDL, LDL, TG, HbA1c	Mock	х	X		X	
Nystrom et al. (2018)	Total cholesterol, HDL, LDL, TG	Mock		X			
Scherer et al. (2018)	HbA1c	Mock	X	X			
Struikman et al. (2020)	Hemoglobin, TSH, vitamin D	Mock	X	X			
Talboom-Kamp et al. (2020)	Type of test differed per patient	Real		X			
Tao et al. (2018)	Glucose (fasting and postprandial)	Mock		x			
Zarcadoolas et al. (2013)	Total cholesterol, HDL, LDL, TG, HbA1c	Mock	X				
Zhang et al. (2020)	Total cholesterol, HDL, LDL, TG	Real and	X				
		mock					
Zhang et al. (2021)	Total cholesterol, HDL, LDL	Mock		х			
Zikmund-Fisher et al. (2017)	Platelet count, ALT, creatinine	Mock	х	х			
Zikmund-Fisher et al. (2018)	Platelet count, ALT, creatinine	Mock		X			

Abbreviations: ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; high-density lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; TSH, thyroid stimulating hormone.

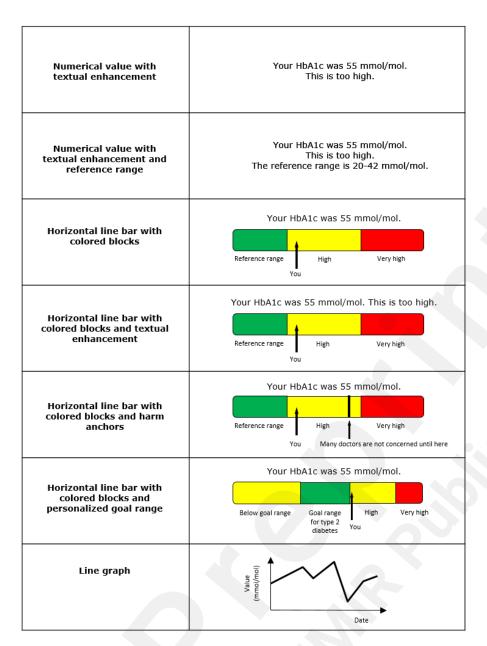


Figure 2. Examples of presentation formats used for displaying laboratory test results. The examples are based on a hypothetical HbA1c (hemoglobin A1c) test result. A combination of different presentation formats is possible.

Quality assessment

The quality assessment tool (MMAT) includes five assessment criteria per study design, each of which is given a score of 20% each if present (Appendix 4). Both qualitative articles (n = 2) scored 100%, indicating excellent quality. Quantitative articles (n = 11) scored between 0% and 100%, indicating a broad range of quality. These articles lost points mainly for sampling issues (biased sampling strategies and unrepresentative samples), randomization issues (unclear randomization process and incomparable groups at baseline), unclear blinding process, and lack of clarity about

completeness of outcome data and nonresponse bias. Mixed methods articles (n = 5) scored between 60% and 100% (low-to-high quality), for the same reasons as described above. In addition, weaknesses in these articles included having an unclear rationale for using a mixed methods design, unclear presentation format, and failure to adequately interpret the results of the integration of qualitative and quantitative findings.

Outcome measures

In all eighteen studies, perception was an outcome measure, further categorized into affective perception (n = 7), perceived magnitude (n = 6), cognitive perception (n = 10), and perception of communication (n = 14) (Table 3, Textbox 1). Additionally, ten studies assessed behavioral intention, while memory was considered as outcome measure in three of the included studies.

Affective perception

Several studies explored participants' confidence and concerns while viewing and interpreting laboratory results [15, 41-44]. Talboom et al. demonstrated that presenting laboratory test results in horizontal line bar format with colored blocks and textual explanation enhanced participants confidence in managing their own health, although this effect was not significant [44]. No comparison between different presentation formats and the influence on confidence was described. These comparisons were also lacking in the other studies.

When results were presented in a horizontal line bar format with colored blocks and a personalized goal range, negative affect was significantly higher than when results were presented without colored blocks [43].

Scherer et al. studied the use of personalized reference values or goal ranges [43]. A type 2 diabetes mellitus scenario was studied, in which standard reference ranges are often not applicable. Replacing standard ranges with goal ranges significantly reduced perceived discouragement compared to situations without goal display, highlighting a positive effect of goal ranges on affective perception [43]. Furthermore, two other studies recommended the use of personalized reference ranges in their discussion [41, 44].

In three studies, whether laboratory test results were within reference ranges seemed to be more important than the presentation format. As results moved further from the reference range, positive emotions decreased and negative emotions increased [15, 42, 45]. This change in affective perception was not influenced by message format.

Perceived magnitude

Perceived magnitude of risk of extremely out-of-range results remained unaffected by the presentation formats in all studies. However, for near-normal or slightly out-of-range results participants encountered difficulties in estimating test result severity. Accurate risk perception was lacking, since the severity of these results was inconsistently overestimated or underestimated [7, 18, 42, 46, 47]. Zikmund et al. demonstrated that the incorporation of harm anchors (i.e. a threshold line outside the reference range labeled "many doctors are not concerned until here") significantly enhanced adequate estimations of test result severity for slightly out-of-range results [47].

Three studies investigated the effect of presentation format on perceived size of risk [18, 19, 42]. Morrow et al. compared horizontal line bars with both numerical and video-enhanced formats. For both low and borderline risk scenarios, perceived magnitude of risk was significantly higher when horizontal line bars were used, indicating that participants tend to overestimate risk for normal results [42]. Tao et al. did not specify whether result normality affected risk perception using different types of horizontal line bars. However, when personalized information was added to the line bar, risk was perceived as significantly higher. Interestingly, despite this, participants expressed a preference for personalized line bars [19]. Zikmund et al. compared different types of horizontal line bars with a numerical format. Participants expressed the highest risk perception when near-normal results were presented in a numerical format with a reference range, whereas perceived risk was lowest when horizontal line bars with gradient colors were used [18].

Cognitive perception

In all ten studies assessing this outcome, participants consistently demonstrated the ability to understand or identify out-of-range results. There was consensus among these studies that presenting numbers with a reference range only was insufficient and that tailored information is needed [48-50]. A qualitative study revealed that participants preferred the inclusion of textual explanations [51]. In two studies using horizontal line bars as presentation format, understanding was significantly increased when color, text, or personalized information (e.g. goal range) was added [19, 43].

Table 3. The outcomes assessed in all included studies (n = 18).

Author (year)		Pe	rception		Decision	Act
	Affective	Perceived	Cognitive	Perception of	Behavioral	Hea
	perception	magnitude	perception	communication	intention	
Bar-Lev et al. (2020)		X			X	'
Brewer et al. (2012)				X		'
Elder et al. (2012)			X	X		'
Fraccaro et al. (2018)		X			X	
Hohenstein et al. (2018)	X		X	X		
Kelman et al. (2016)			X	X	X	
Morrow et al. (2017)	X		X	X		
Morrow et al. (2019)	X	X		X	X	
Nystrom et al. (2018)				X	X	
Scherer et al. (2018)	X		X		X	
Struikman et al. (2020)	X		X		X	
Talboom-Kamp et al. (2020)	X			Х	X	
Tao et al. (2018)		X	X	Х		
Zarcadoolas et al. (2013)			X	X		
Zhang et al. (2020)	X		X	Х		
Zhang et al. (2021)			X	X		
Zikmund-Fisher et al. (2017)		X		X	X	
Zikmund-Fisher et al. (2018)		X		x	X	

Perception of communication

The majority of included studies observed a significant association between presentation format, participant satisfaction and ease of use. In general, satisfaction and ease of use were rated higher when test results were presented using horizontal line bars with colored blocks, as compared to other presentation formats [18, 19, 42, 44, 49, 51, 52]. In one qualitative study, numerical presentation with reference ranges was deemed insufficient, while graphs were considered too complex for easy comprehension [51]. Both quantitative and qualitative studies demonstrated that adding textual information, such as explanations about the meaning and normality of test results, and background information about testing, enhanced understanding and effective utilization of results. Particularly, the use of lay terms played an important role [15, 19, 41, 44, 48-50, 53]. Furthermore, two studies found a significant positive effect on participant satisfaction when personalized information or goal ranges were incorporated [19, 44]. This addition was also recommended by two qualitative studies [49, 51]. Zikmund-Fisher et al. specifically studied different types of horizontal line bars and showed no significant differences in participants' preferences among the studied formats.

Decision

Behavioral intention was assessed in ten studies, with varying focuses among them. Some authors examined whether participants would contact their physician [7, 18, 43, 47, 53], while others inquired about participants seeking additional information online [46, 48, 53], or making lifestyle changes after reviewing lab results [42, 44, 53].

Two studies demonstrated that presentation format did not significantly influence participants' need to contact their health care provider [7, 43]. Conversely, Zikmund-Fisher et al. demonstrated in two studies that participants who viewed near-normal results in a numerical format were significantly more likely to contact their doctor compared to those viewing the same results in one of the horizontal line formats. The use of harm-anchors in horizontal line bars substantially reduced the number of participants who would want to contact their physician [18, 47].

Participants' tendency to seek information online was significantly influenced by the presentation format, with a significant higher inclination observed for the numerical format compared to the textual format [46]. Kelman et al. and Nystrom et al. similarly found that approximately half of the participants would look for additional information after receiving test results in numerical format with reference ranges and textual enhancement, or horizontal line bars with colored blocks, respectively. However, no comparison was made between presentation formats in these studies [48, 53].

Intention to make lifestyle changes after viewing laboratory results was mentioned as an outcome in three studies [42, 44, 53]. Only one of these studies compared several presentation formats, but found no significant differences between using a numerical format, horizontal line bars with colored blocks, or video-enhanced format in terms of health-beneficial intentions [42].

Action

There was limited data concerning the actions patients take to comprehend their test results. One mixed methods study used a numerical format with reference ranges as presentation format [15]. Participants with abnormal test results were significantly more likely to take action compared to those with normal test results. As no comparison between presentation formats was investigated, the effect of format on action remains unstudied.

Memory

Variation in presentation format of test results, using either a numerical format with reference ranges and textual enhancement, horizontal line bars with colored blocks, video presentation, or grouped presentation, did not significantly impact participant recall [7, 42, 52]. However, one study found a small but statistically significant effect of test result normality on memory [42].

Struikman et al. looked at patient health engagement (PHE), a composite measure comprising affective perception, cognitive perception and behavioral intention. When test results were presented with explanatory text and visualization, PHE was significantly higher compared to when no explanatory information was provided [54].

Discussion

Principle results

Based on reviewing eighteen articles assessing various presentation formats of laboratory test results, we can conclude there is not only one optimal presentation format in terms of patients' perception, decision, action, and memory. Nevertheless, the results suggest that presentation format is important for patient outcomes.

Presentation formats differed between articles, but numerical values with reference ranges or horizontal line bars with colored blocks were most commonly used. All included studies investigated perception as an outcome measure, most frequently perception of communication (n = 14/18).

Patients' cognitive perception and perception of communication improved when results were presented using horizontal line bars accompanied with colored blocks and textual information. Incorporation of reference ranges or personalized goal ranges further enhanced patients' perception levels. Using horizontal line bars with harm anchors significantly reduced the number of participants who would want to contact their physician compared to using a numerical format. Furthermore, using the numerical format significantly increased participants' tendency to search for information online, compared to a textual format. Therefore, although no specific format is dissuaded in the included studies, the results suggest that presenting only numbers with reference ranges is suboptimal. Furthermore, adding too many colors and other information to test results could lead to an overload of visual information for some patients, and therefore ultimately decrease the amount of usable knowledge [43]. Action and memory were less frequently studied, respectively in one and three studies. Action was studied in a descriptive study not comparing different presentation formats, while memory was not significantly impacted by presentation format.

Several studies highlighted that patients' affective perception, action, and memory were not only influenced by presentation format, but also by whether test results were within or outside the reference range. Presentation format appeared to be secondary to test result normality if results were extremely out-of-range. Nevertheless, when results were near-normal, presentation format was more important than result normality regarding effects on patient outcomes.

Overall, the results of this review indicate that presentation format affects patient outcomes, especially in case of normal or near-normal test results.

Strengths and limitations

A multidisciplinary team of general practitioners, behavioral scientists and clinical chemists were involved in this review, which is one of its strengths. Both presentation formats and outcomes used in the included studies were standardized by the authors using a published taxonomy to enable comparison of different studies. As the results of our review are narrative, there is a potential risk of bias when describing them, introduced by the authors. Furthermore, selection bias arising from heterogeneity of studies represents a notable limitation of this review.

A limitation of the included studies is the use of volunteers or participants recruited via convenience sampling. Only three out of eighteen studies used real patients, of which one study used real test results. Sixteen studies used mock test results. Displaying mock data is common practice in system evaluation. This method involves less burden and privacy risks for participants, as no personal medical data is collected. Nonetheless, participants lack personal relevance of test results when

hypothetical scenarios are used. Therefore, it is possible that most of the included studies did not reflect how participants would respond in real life to their own personal health information. This may limit the generalizability of the findings. However, using personal test results could have negatively affected the comparability between studies, as each participant would have encountered different data.

Another limitation is the study heterogeneity. Included articles varied widely in methods, presentation formats, and outcome measures used. Comparison of presentation formats is challenging, especially since laboratory test result communication can have a wide range of possible purposes, from interpreting one single value, to identifying important trends on time [24]. Therefore, useful presentation formats may vary per clinical scenario, which presents new challenges for designing a preferred format.

As stated above, patients have to complete several steps to go from data perception to usable knowledge [17, 32]. The majority of the included studies studied the first two steps of this taxonomy, perception and decision. Only one study examined action as outcome measure, and three studies obtained information about memory. Therefore, little is known about the impact of presentation formats on actual health behavior and usable knowledge.

Comparison with prior work

In 2019, Witteman and Zikmund-Fisher formulated ten recommendations to communicate laboratory test results via online portals in ways that support understanding and actionable knowledge for patients [17]. Our findings align with several of their recommendations, such as the importance of providing a clear takeaway message for each result, establishing thresholds for concern and action whenever feasible, and personalizing the frame of reference by permitting custom reference ranges.

Several initiatives aim to inform and educate patients about laboratory test results while incorporating the insights described above. One example is Lab Tests Online, a website that provided patients with general information about laboratory tests and their meaning [55]. Recently, the usability of ChatGPT (i.e. an upcoming tool based on natural language processing) to interpret laboratory test results was examined [56]. ChatGPT appeared to provide somewhat superficial interpretations, which were not always correct, and is therefore not yet usable as a primary information source for patients. However, this may change in the future with the further development of these type of tools. While our review focused on different presentation formats of laboratory test results, interpretative comments provided by laboratory specialists were not studied. Laboratory

specialists often add comments to test results to assist general practitioners [57, 58]. A pilot study by Verboeket et al. demonstrated a positive impact on patient empowerment when patients had access to these patient specific comments [59]. Therefore, further research should explore the impact of adding interpretative comments to laboratory test results on patient outcomes.

Patients now have online access to not only their laboratory test results, but also to medical imaging and microbiology results. Given the variations in these types of diagnostic test results, further research is warranted to explore effective components for communicating these other types of test results to patients in their electronic health record.

Conclusions

As patients increasingly receive their diagnostic laboratory test results via electronic health records, it is becoming more and more important to make test results meaningful to them. Unnecessary confusion or anxiety should be avoided, especially when test results are outside of the reference range. The data from our systematic review suggest that horizontal line bars with colored blocks and reference ranges or personalized goal ranges increase patients' cognitive perception and perception of communication. Furthermore, this format might reduce patients' concerns and their tendency to contact their physician. Nevertheless, there is a need for further research that involves more comprehensive data collection and reporting, as well as more systematic evaluation methods. By using these findings, further research could inform the development of an interpretation support tool for laboratory test results.

Acknowledgements

Authors' contributions: all authors contributed to the conception of the review. FM and FS conducted the screening and data extraction. FM and FS drafted the manuscript. JJ, JB, SM and JC gave guidance throughout the whole research process. All authors critically revised and approved the manuscript.

Funding: this study received funding by a partnership between Care Research Netherlands and the Medical Sciences domain of the Dutch Research Council (Dutch abbreviation ZonMW) (project number 08391052120002). ZonMW had no direct involvement in any facet of the design of the study, analysis or interpretation of the data or writing of the manuscript.

Conflicts of interest

None declared.

Abbreviations

ALT: alanine aminotransferase

ChatGPT: Chat Generative Pre-trained Transformer

eGFR: estimated glomerular filtration rate

EHR: electronic health record

HbA1c: hemoglobin A1c

HDL: high-density lipoprotein

LDL: low-density lipoprotein

MMAT: Mixed Methods Appraisal Tool

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

TG: triglycerides

TSH: thyroid stimulating hormone

References

1. Kaelber DC, Jha AK, Johnston D, Middleton B, Bates DW. A research agenda for personal health records (PHRs). J Am Med Inform Assoc. 2008;15(6):729-36. doi:10.1197/jamia.M2547

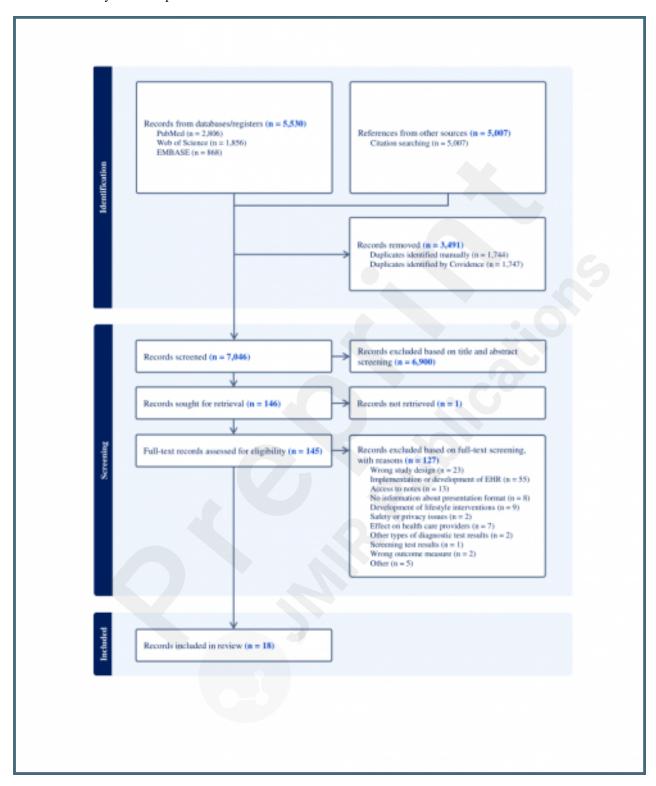
- 2. Tang PC, Ash JS, Bates DW, Overhage JM, Sands DZ. Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. J Am Med Inform Assoc. 2006;13(2):121-6. doi:10.1197/jamia.M2025
- 3. Ancker JS, Osorio SN, Cheriff A, Cole CL, Silver M, Kaushal R. Patient activation and use of an electronic patient portal. Inform Health Soc Care. 2015;40(3):254-66. doi:10.3109/17538157.2014.908200
- 4. Lee CI, Langlotz CP, Elmore JG. Implications of direct patient online access to radiology reports through patient web portals. J Am Coll Radiol. 2016;13(12):1608-14. doi:10.1016/j.jacr.2016.09.007
- 5. Fisher B, Bhavnani V, Winfield M. How patients use access to their full health records: a qualitative study of patients in general practice. J R Soc Med. 2009;102(12):539-44. doi:10.1258/jrsm.2009.090328
- 6. Bhavnani V, Fisher B, Winfield M, Seed P. How patients use access to their electronic GP record a quantitative study. Fam Pract. 2011;28(2):188-94. doi:10.1093/fampra/cmq092
- 7. Fraccaro P, Vigo M, Balatsoukas P, van der Veer SN, Hassan L, Williams R, et al. Presentation of laboratory test results in patient portals: influence of interface design on risk interpretation and visual search behaviour. BMC Med Inform Decis Mak. 2018;18(1):11. doi:10.1186/s12911-018-0589-7
- 8. Parker RM, Ratzan SC, Lurie N. Health literacy: a policy challenge for advancing high-quality health care. Health Aff. 2003;22(4):147-53. doi:10.1377/hlthaff.22.4.147
- 9. Garrido T, Jamieson L, Zhou Y, Wiesenthal A, Liang L. Effect of electronic health records in ambulatory care: retrospective, serial, cross sectional study. BMJ. 2005;330(7491):581. doi:10.1136/bmj.330.7491.581
- 10. Krist AH, Woolf SH. A vision for patient-centered health information systems. J Am Med Assoc. 2011;305(3):300-1. doi:10.1001/jama.2010.2011
- 11. Pillemer F, Price RA, Paone S, Martich GD, Albert S, Haidari L, et al. Direct release of test results to patients increases patient engagement and utilization of care. PLoS One. 2016;11(6):e0154743. doi:10.1371/journal.pone.0154743
- 12. Sung S, Forman-Hoffman V, Wilson MC, Cram P. Direct reporting of laboratory test results to patients by mail to enhance patient safety. J Gen Intern Med. 2006;21(10):1075-8. doi:10.1111/j.1525-1497.2006.00553.x
- 13. Giardina TD, Baldwin J, Nystrom DT, Sittig DF, Singh H. Patient perceptions of receiving test results via online portals: a mixed-methods study. J Am Med Inform Assoc. 2018;25(4):440-6. doi:10.1093/jamia/ocx140
- 14. Palen TE, Ross C, Powers JD, Xu S. Association of online patient access to clinicians and medical records with use of clinical services. J Am Med Assoc. 2012;308(19). doi:10.1001/jama.2012.14126
- 15. Zhang Z, Citardi D, Xing A, Luo X, Lu Y, He Z. Patient challenges and needs in comprehending laboratory test results: mixed methods study. J Med Internet Res. 2020;22(12):e18725. doi:10.2196/18725
- 16. Irizarry T, DeVito Dabbs A, Curran CR. Patient portals and patient engagement: a state of the science review. J Med Internet Res. 2015;17(6):e148. doi:10.2196/jmir.4255
- 17. Witteman HO, Zikmund-Fisher BJ. Communicating laboratory results to patients and families. Clin Chem Lab Med. 2019;57(3):359-64. doi:10.1515/cclm-2018-0634
- 18. Zikmund-Fisher BJ, Scherer AM, Witteman HO, Solomon JB, Exe NL, Tarini BA, et al.

Graphics help patients distinguish between urgent and non-urgent deviations in laboratory test results. J Am Med Inform Assoc. 2017;24(3):520-8. doi:10.1093/jamia/ocw169

- 19. Tao D, Yuan J, Qu X. Presenting self-monitoring test results for consumers: the effects of graphical formats and age. J Am Med Inform Assoc. 2018;25(8):1036-46. doi:10.1093/jamia/ocy046
- 20. Zikmund-Fisher BJ, Exe NL, Witteman HO. Numeracy and literacy independently predict patients' ability to identify out-of-range test results. J Med Internet Res. 2014;16(8):e187. doi:10.2196/jmir.3241
- 21. Keselman A, Smith CA. A classification of errors in lay comprehension of medical documents. J Biomed Inform. 2012;45(6):1151-63. doi:10.1016/j.jbi.2012.07.012
- 22. McDonald KM, Bryce CL, Graber ML. The patient is in: patient involvement strategies for diagnostic error mitigation. BMJ Qual Saf. 2013;22(Suppl 2):ii33-ii9. doi:10.1136/bmjqs-2012-001623
- 23. Britto MT, Jimison HB, Munafo JK, Wissman J, Rogers ML, Hersh W. Usability testing finds problems for novice users of pediatric portals. J Am Med Inform Assoc. 2009;16(5):660-9. doi:10.1197/jamia.M3154
- 24. Turchioe MR, Myers A, Isaac S, Baik D, Grossman LV, Ancker JS, et al. A systematic review of patient-facing visualizations of personal health data. Appl Clin Inform. 2019;10(4):751-70. doi:10.1055/s-0039-1697592
- 25. O'Kane M, Freedman D, Zikmund-Fisher BJ. Can patients use test results effectively if they have direct access? BMJ. 2015;350. doi:10.1136/bmj.h673
- 26. Zikmund-Fisher BJ, Witteman HO, Dickson M, Fuhrel-Forbis A, Kahn VC, Exe NL, et al. Blocks, ovals, or people? Icon type affects risk perceptions and recall of pictographs. Med Decis Making. 2014;34(4):443-53. doi:10.1177/0272989X13511706
- 27. Watson ID. Making test results more easily understood by patients. BMJ. 2015;350. doi:10.1136/bmj.h1942
- 28. Garcia-Retamero R, Cokely ET. Designing visual aids that promote risk literacy: a systematic review of health research and evidence-based design heuristics. Hum Factors. 2017;59(4):582-627. doi:10.1177/0018720817690634
- 29. Torsvik T, Lillebo B, Mikkelsen G. Presentation of clinical laboratory results: an experimental comparison of four visualization techniques. J Am Med Inform Assoc. 2013;20(2):325-31. doi:10.1136/amiajnl-2012-001147
- 30. Boisot M, Canals A. Data, information and knowledge: have we got it right? Journal of evolutionary economics. 2004;14:43-67. doi:10.1007/s00191-003-0181-9
- 31. Chen M, Ebert D, Hagen H, Laramee RS, Van Liere R, Ma K-L, et al. Data, information, and knowledge in visualization. IEEE computer graphics and applications. 2008;29(1):12-9. doi:10.1109/MCG.2009.6
- 32. Ancker JS, Benda NC, Sharma MM, Johnson SB, Weiner S, Zikmund-Fisher BJ. Taxonomies for synthesizing the evidence on communicating numbers in health: goals, format, and structure. Risk Anal. 2022;42(12):2656-70. doi:10.1111/risa.13875
- 33. Wickens CD, Helton WS, Hollands JG, Banbury S. Engineering psychology and human performance. 5th edition. Routledge; 2021. ISBN:9781003177616
- 34. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. doi:10.1016/j.ijsu.2021.105906
- 35. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available from: www.covidence.org.
- 36. Becker MH. The health belief model and personal health behavior. Health Educ Monogr. 1974;2:324-508. doi:10.1177/109019817400200407
- 37. Witte K. Putting the fear back into fear appeals: The extended parallel process model. Commun Monogr. 1992;59(4):329-49. doi:10.1080/03637759209376276

38. Hong QN, Pluye P, Fàbregues S, Bartlett G, Boardman F, Cargo M, et al. Mixed methods appraisal tool (MMAT), version 2018. Registration of copyright. 2018;1148552(10).

- 39. Pace R, Pluye P, Bartlett G, Macaulay AC, Salsberg J, Jagosh J, et al. Testing the reliability and efficiency of the pilot Mixed Methods Appraisal Tool (MMAT) for systematic mixed studies review. Int J Nurs Stud. 2012;49(1):47-53. doi:10.1016/j.ijnurstu.2011.07.002
- 40. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276-82. PMID:23092060
- 41. Hohenstein JC, Baumer EP, Reynolds L, Murnane EL, O'Dell D, Lee S, et al. Supporting accurate interpretation of self-administered medical test results for mobile health: assessment of design, demographics, and health condition. JMIR Hum Factors. 2018;5(1):e8620. doi:10.2196/humanfactors.8620
- 42. Morrow D, Azevedo RFL, Garcia-Retamero R, Hasegawa-Johnson M, Huang T, Schuh W, et al. Contextualizing numeric clinical test results for gist comprehension: implications for EHR patient portals. J Exp Psychol Appl. 2019;25(1):41-61. doi:10.1037/xap0000203
- 43. Scherer AM, Witteman HO, Solomon J, Exe NL, Fagerlin A, Zikmund-Fisher BJ. Improving the understanding of test results by substituting (not adding) goal ranges: web-based between-subjects experiment. J Med Internet Res. 2018;20(10):e11027. doi:10.2196/11027
- 44. Talboom-Kamp E, Tossaint-Schoenmakers R, Goedhart A, Versluis A, Kasteleyn M. Patients' attitudes toward an online patient portal for communicating laboratory test results: real-world study using the eHealth Impact Questionnaire. JMIR Form Res. 2020;4(3):e17060. doi:10.2196/17060
- 45. Morrow D, Hasegawa-Johnson M, Huang T, Schuh W, Azevedo RFL, Gu K, et al. A multidisciplinary approach to designing and evaluating electronic medical record portal messages that support patient self-care. J Biomed Inform. 2017;69:63-74. doi:10.1016/j.jbi.2017.03.015
- 46. Bar-Lev S, Beimel D. Numbers, graphs and words do we really understand the lab test results accessible via the patient portals? Isr J Health Policy Res. 2020;9(1):58. doi:10.1186/s13584-020-00415-z
- 47. Zikmund-Fisher BJ, Scherer AM, Witteman HO, Solomon JB, Exe NL, Fagerlin A. Effect of harm anchors in visual displays of test results on patient perceptions of urgency about near-normal values: experimental study. J Med Internet Res. 2018;20(3):e98. doi:10.2196/jmir.8889
- 48. Kelman A, Robinson CO, Cochin E, Ahluwalia NJ, Braverman J, Chiauzzi E, et al. Communicating laboratory test results for rheumatoid factor: what do patients and physicians want? Patient Prefer Adherence. 2016;10:2501-17. doi:10.2147/PPA.S104396
- 49. Zhang Z, Kmoth L, Luo X, He Z. User-centered system design for communicating clinical laboratory test results: design and evaluation study. JMIR Hum Factors. 2021;8(4):e26017. doi:10.2196/26017
- 50. Zarcadoolas C, Vaughon WL, Czaja SJ, Levy J, Rockoff ML. Consumers' perceptions of patient-accessible electronic medical records. J Med Internet Res. 2013;15(8):e168. doi:10.2196/jmir.2507
- 51. Elder NC, Barney K. "But what does it mean for me?" Primary care patients' communication preferences for test results notification. Jt Comm J Qual Patient Saf. 2012;38(4):168-AP1. doi:10.1016/S1553-7250(12)38022-7
- 52. Brewer NT, Gilkey MB, Lillie SE, Hesse BW, Sheridan SL. Tables or bar graphs? Presenting test results in electronic medical records. Med Decis Making. 2012;32(4):545-53. doi:10.1177/0272989X12441395
- 53. Nystrom DT, Singh H, Baldwin J, Sittig DF, Giardina TD. Methods for patient-centered interface design of test result display in online portals. eGEMs. 2018;6(1):15. doi:10.5334/egems.255
- 54. Struikman B, Bol N, Goedhart A, van Weert JCM, Talboom-Kamp E, van Delft S, et al. Features of a patient portal for blood test results and patient health engagement: web-based pre-post experiment. J Med Internet Res. 2020;22(7):e15798. doi:10.2196/15798
- 55. Campbell B, Linzer G, Dufour DR. Lab Tests Online and consumer understanding of


laboratory testing. Clin Chim Acta. 2014;432:162-5. doi:10.1016/j.cca.2013.09.028

- 56. Cadamuro J, Cabitza F, Debeljak Z, De Bruyne S, Frans G, Perez SM, et al. Potentials and pitfalls of ChatGPT and natural-language artificial intelligence models for the understanding of laboratory medicine test results. An assessment by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group on Artificial Intelligence (WG-AI). Clin Chem Lab Med. 2023;61(7):1158-66. doi:10.1515/cclm-2023-0355
- 57. Barlow IM. Are biochemistry interpretative comments helpful? Results of a general practitioner and nurse practitioner survey. Ann Clin Biochem. 2008;45(1):88-90. doi:10.1258/acb.2007.007134
- 58. Verboeket-van de Venne W, Oosterhuis W, Keuren J, Kleinveld H. Reflective testing in the Netherlands: usefulness to improve the diagnostic and therapeutic process in general practice. Ann Clin Biochem. 2009;46(4):346-7. doi:10.1258/acb.2009.009039
- 59. Verboeket-van de Venne WPHG, Hendriks-Dybicz AM, Oosterhuis WP. Patiënten informeren over laboratoriumuitslagen in het kader van patient empowerment. Ned Tijdschr Klin Chem Labgeneesk. 2015;40:223-5.

Supplementary Files

Figures

Flow chart of the study selection process.

Examples of presentation formats used for displaying laboratory test results. The examples are based on a hypothetical HbA1c (hemoglobin A1c) test result. A combination of different presentation formats is possible.

Numerical value with textual enhancement	Your HbA1c was 55 mmol/mol. This is too high.
Numerical value with textual enhancement and reference range	Your HbA1c was 55 mmol/mol. This is too high. The reference range is 20-42 mmol/mol.
Horizontal line bar with colored blocks	Your HbA1c was 55 mmol/mol. Reference range High Very high
Horizontal line bar with colored blocks and textual enhancement	Your HbA1c was 55 mmol/mol. This is too high. Reference range High Very high
Horizontal line bar with colored blocks and harm anchors	Your HbA1c was 55 mmol/mol. Reference range High Very high You Many doctors are not concerned until here
Horizontal line bar with colored blocks and personalized goal range	Your HbA1c was 55 mmol/mol. Below goal range Goal range for type 2 diabetes You
Line graph	artie/V Date

Multimedia Appendixes

PRISMA 2020 checklist.

URL: http://asset.jmir.pub/assets/e33587b23dc5cf9468dc5c3e3a4ca145.docx

Search strategy for PubMed, Web of Science, and EMBASE up to May 31st, 2023. URL: http://asset.jmir.pub/assets/c1bef606b5e3c9a1a24d656dee202211.docx

Detailed overview of laboratory test results presentation formats in all included studies (n = 18).

URL: http://asset.jmir.pub/assets/1309329a877da53523f035fcbce7de42.docx

Detailed overview of quality assessment of all included studies (n = 18). URL: http://asset.jmir.pub/assets/e28fc1ed3eca7e4632479951d11f61a1.docx

CONSORT (or other) checklists

PRISMA 2020 checklist.

URL: http://asset.jmir.pub/assets/47e35c085eb353a35f1530b0239745f7.pdf