

Economic burden of community-acquired antibioticresistant urinary tract infections: a systematic review and meta-analysis

Nina Jiayue Zhu, Misghina Weldegiorgis, Emma Carter, Colin Brown, Alison Holmes, Paul Aylin

Submitted to: JMIR Public Health and Surveillance on: October 21, 2023

Disclaimer: © **The authors. All rights reserved.** This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.

Table of Contents

Original Manuscript	5
Supplementary Files	
Figures	
Figure 0	
Figure 1	
Figure 2	
Figure 3	
Figure 4	
Multimedia Appendixes	
Multimedia Appendix 1	
CONSORT (or other) checklists	
CONSORT (or other) checklist ()	41

Economic burden of community-acquired antibiotic-resistant urinary tract infections: a systematic review and meta-analysis

Nina Jiayue Zhu¹ PhD, MPH; Misghina Weldegiorgis^{1*}; Emma Carter^{1*}; Colin Brown²; Alison Holmes¹; Paul Aylin³

Corresponding Author:

Nina Jiayue Zhu PhD, MPH

National Institute for Healthcare Research (NIHR) Health Protection Research Unit (HPRU) in Healthcare-associated Infection and Antimicrobial Resistance (HCAI & AMR)

Imperial College London Hammersmith Campus Du Cane Road London GB

Abstract

Background: Antibiotic resistance (ABR) poses a major burden to global health and economic systems. ABR in community-acquired urinary tract infections (CA-UTIs) has become increasingly prevalent. Accurate estimates of the clinical and economic burden of ABR are needed to support medical resource prioritisation and cost-effectiveness evaluations of UTI interventions.

Objective: This study aims to systematically synthesize the evidence in the economic costs associated with ABR in CA-UTIs, using published studies comparing the costs of antibiotic-susceptible and antibiotic-resistant cases.

Methods: We searched PubMed, Ovid Medline and Embase, Cochrane Review Library, and Scopus databases. Studies published in English from 01 January 2012 to 31 January 2023 reporting the economic costs of ABR in CA-UTI of any microbe were included. Independent screening of title/abstracts and full texts were performed based on pre-specified criteria. Quality assessment was performed using the Integrated Quality Criteria for Review of Multiple Study Designs (ICROMS) tool. Data in UTI diagnosis criteria, patient characteristics, perspectives, resources costed, and patient and health economic outcomes, including mortality, hospital length of stay (LOS), and costs was extracted and analysed. Monetary costs were converted into 2023 USD.

Results: This review included 15 studies with a total of 57,251 CA-UTI cases. All studies were from high- or upper middle-income countries. Fourteen (93%) studies took a health system perspective. Thirteen (87%) focused on hospitalised patients. Fourteen (93%) reported the UTI pathogens. E. coli, K. pneumoniae, and P. aeruginosa are the most prevalent organisms. Twelve (80%) studies reported mortality, of which, 7 reported increased mortality in the ABR group. Random effects meta-analyses estimated an odds ratio of 1.50 (95% CI: 1.29, 1.74) in the ABR CA-UTI cases. All 13 hospital-based studies reported LOS, of which, 11 reported significantly higher LOS in the ABR group. The meta-analysis of reported median LOS estimated a pooled excess LOS ranged from 1.50 days (95% CI: 0.71, 4.00) to 2.00 days (95% CI: 0.85, 3.15). The meta-analysis of reported mean LOS estimated a pooled excess LOS of 2.45 days (95% CI: 0.51 – 4.39). Eight (53%) studies reported costs in monetary terms, none discounted the costs. All these 8 studies reported higher medical costs spent treating patients with ABR CA-UTI in hospitals. The highest excess cost was observed in UTI caused by Carbapenem-resistant Enterobacteriaceae. No meta-analysis was performed for monetary costs due to heterogeneity.

Conclusions: ABR attributed to increased mortality, hospital LOS, and economic costs among the patients with CA-UTI. The findings of this review highlighted the scarcity of research in this area, particularly in patient morbidity and chronic sequelae and costs incurred in the community healthcare. Future research calls for cost-of-illness analysis of infections standardising therapy-pathogen combination comparators, medical resources, productivity loss, and intangible costs to be captured, and data from community sectors and low-resourced settings and countries. Clinical Trial: PROSPERO CRD42023374551

¹National Institute for Healthcare Research (NIHR) Health Protection Research Unit (HPRU) in Healthcare-associated Infection and Antimicrobial Resistance (HCAI & AMR) Imperial College London London GB

²HCAI, Fungal, AMR, AMU and Sepsis Division UK Health Security Agency (UKHSA) London GB

³Department of Primary Care and Public Health School of Public Health London GB

^{*}these authors contributed equally

(JMIR Preprints 21/10/2023:53828)

DOI: https://doi.org/10.2196/preprints.53828

Preprint Settings

- 1) Would you like to publish your submitted manuscript as preprint?
- ✓ Please make my preprint PDF available to anyone at any time (recommended).

Please make my preprint PDF available only to logged-in users; I understand that my title and abstract will remain visible to all users. Only make the preprint title and abstract visible.

- No, I do not wish to publish my submitted manuscript as a preprint.
- 2) If accepted for publication in a JMIR journal, would you like the PDF to be visible to the public?
- ✓ Yes, please make my accepted manuscript PDF available to anyone at any time (Recommended).

Yes, but please make my accepted manuscript PDF available only to logged-in users; I understand that the title and abstract will remain very Yes, but only make the title and abstract visible (see Important note, above). I understand that if I later pay to participate in <a href="https://example.com/above/participate-in-very make-in-very make

Original Manuscript

JMIR

Economic burden of community-acquired antibiotic-resistant urinary tract infections: a systematic review and meta-analysis

Nina Zhu^{1,2}, Emma Carter^{1*}, Misghina Weldegiorgis^{1*}, Hossam Waleed Almadhoon¹, Colin Brown³, Alison Holmes^{1,2}, Paul Aylin^{4,5} (*equal contribution)

Affiliations:

- 1. National Institute for Healthcare Research (NIHR) Health Protection Research Unit (HPRU) in Healthcareassociated Infection and Antimicrobial Resistance (HCAI & AMR), Imperial College London, London, United Kingdom
- 2. Centre for Antimicrobial Optimisation (CAMO), Imperial College London, London, United Kingdom
- 3. HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency (UKHSA), London, United Kingdom
- 4. Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
- 5. Patient Safety Translational Research Centre, Institute of Global Health Innovation, Imperial College London, London, United Kingdom

Keywords

Cost-effectiveness; urinary tract infection; antibiotic resistance; mortality; hospital length of stay

Abstract (450/450)

Background

Antibiotic resistance (ABR) poses a major burden to global health and economic systems. ABR in community-acquired urinary tract infections (CA-UTIs) has become increasingly prevalent. Accurate estimates of the clinical and economic burden of ABR are needed to support medical resource prioritisation and cost-effectiveness evaluations of UTI interventions.

Objective

This study aims to systematically synthesize the evidence in the economic costs associated with ABR in CA-UTIs, using published studies comparing the costs of antibiotic-susceptible and antibiotic-resistant cases.

Methods

We searched PubMed, Ovid Medline and Embase, Cochrane Review Library, and Scopus databases. Studies published in English from 01 January 2008 to 31 January 2023 reporting the economic costs of ABR in CA-UTI of any microbe were included. Independent screening of title/abstracts and full texts were performed based on pre-specified criteria. Quality assessment was performed using the Integrated Quality Criteria for Review of Multiple Study Designs (ICROMS) tool. Data in UTI diagnosis criteria, patient characteristics, perspectives, resources costed, and patient and health economic outcomes, including mortality, hospital length of stay (LOS), and costs was extracted and analysed. Monetary costs were converted into 2023 USD.

Results

This review included 15 studies with a total of 57,251 CA-UTI cases. All studies were from high- or upper middle-income countries. Fourteen (93%) studies took a health system perspective. Thirteen (87%) focused on hospitalised patients. Fourteen (93%) reported the UTI pathogens. *Escherichia coli*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa* are the most prevalent organisms. Twelve (80%) studies reported mortality, of which, 7 reported increased mortality in the ABR group. Random effects meta-analyses estimated an odds ratio of 1.50 (95% CI: 1.29, 1.74) in the ABR CA-UTI cases. All 13 hospital-based studies reported LOS, of which, 11 reported significantly higher LOS in the ABR group. The meta-analysis of reported median LOS estimated a pooled excess LOS ranged from 1.50 days (95% CI: 0.71, 4.00) to 2.00 days (95% CI: 0.85, 3.15). The meta-analysis of reported mean LOS estimated a pooled excess LOS of 2.45 days (95% CI: 0.51 – 4.39). Eight (53%) studies reported costs in monetary terms, none discounted the costs. All these 8 studies reported higher medical costs spent treating patients with ABR CA-UTI in hospitals. The highest excess cost was observed in UTI caused by Carbapenem-resistant Enterobacteriaceae. No meta-analysis was performed for monetary costs due to heterogeneity.

Conclusions

ABR attributed to increased mortality, hospital LOS, and economic costs among the patients with CA-UTI. The findings of this review highlighted the scarcity of research in this area, particularly in patient morbidity and chronic sequelae and costs incurred in the community healthcare. Future research calls for cost-of-illness analysis of infections standardising therapy-pathogen combination comparators, medical resources, productivity loss, and intangible costs to be captured, and data from community sectors and low-resourced settings and countries.

Trial Registration

PROSPERO CRD42023374551

Introduction

Urinary tract infections (UTIs) are defined as an infection of the kidneys, bladder, or urethra, defined by a combination of clinical features and the presence of bacteria in urine. These are one of the most common conditions managed in primary care with approximately 75% of women experiencing at least one episode in their lifetime [1]. Consequently, UTI is the second most common reason for primary care antibiotic prescribing in England [2,3]. However, it is estimated that up to 50% these prescriptions were inadequate [4,5]. If managed inappropriately, in cases such as undertreating, subsequent sequelae include recurrent infections, bacteraemia, sepsis, and potential mortality (2). In addition, inappropriate management of UTI includes over-using antibiotics, i.e. using antibiotics when not required or for prolonged durations, accelerates the emergence and transmission of antibiotic resistance (ABR) in the long-term [6]. An increasing level of ABR in the community poses challenges to infection due to higher risk of first-line antibiotic regime failure [7]. In the UK, Escherichia coli (E. coli), the most common cause of UTIs, susceptibility to first line treatments trimethoprim and nitrofurantoin is declining [8]. This may have resulted in a rise in bacteraemia caused by drug-resistant Gram-negative bacteria as over 40% E. coli bacteraemia had a urinary source [9]. Drug-resistant UTIs impose an economic burden on individuals, healthcare systems, and society as a whole [10–13]. The reduced effectiveness of UTI antibiotics can lead to repeated and more extensive treatment, hospital admission and prolonged length of stay (LOS), increased medical costs, and mortality [14]. The UK government has set new commitments in the National Action Plan (NAP) to improve prevention and control of UTIs in the community, particularly the elderly, and to gain better understanding of the economic impacts of ABR [15]. Despite the high prevalence of UTI in the community, the evidence in the financial and human costs associated with drug-resistant UTI is scarce, particularly due to the difficulties in quantifying costs incurred outside secondary care [16]. An understanding of clinical and economic burden of antibiotic-resistant UTI is key to evaluating the cost-effectiveness of stewardship interventions, including those aimed at using point-of-care diagnosis, clinical decision support tools, and reducing prescribing in the community [17]. In this research, we sought to systematically synthesise the evidence in the economic burden associated with antibiotic-resistant community-acquired UTIs (CA-UTIs), using published studies comparing the costs of antibiotic-susceptible and antibiotic-resistant cases.

Methods

This systematic review followed the 'Preferred Reporting Items for Systematic Review and Meta-Analysis' (PRISMA) guidance (PRISMA checklist presented in Supplementary Material, Table S1) [18], and was registered at International Prospective Register of Systematic Reviews (PROSPERO) (Registration number: CRD42023374551).

Search methods

We searched for the studies estimating the economic costs attributable to antibiotic drug-resistant CA-UTIs published from 01 January 2008 to 31 January 2023 using a combination of broad-based (and wildcard) search criteria, including terms for 1) UTI, 2) community-acquired, 3) antibiotic resistance, and 4) health-economic cost. We searched PubMed, Ovid Medline and Embase, Cochrane Review Library, and Scopus databases using the strings developed for each database (Supplementary Material, Table S2). The bibliographies of the identified studies were also reviewed.

Study selection

The study inclusion/exclusion criteria are presented in Table 1, including the patient/population, intervention, comparison and outcomes (PICO) eligibility. Two authors (NZ and MW) independently screened the titles and abstracts of the records yielded from the database search, and independently screened the full-text articles. The discrepancies during title/abstract screening and full-text screening were resolved by consulting the third author (EC). Any article comparing monetary or health-economic costs of antibiotic-resistant versus susceptible CA-UTIs through clinical trials, observational designs (e.g., cohort study, case-control study), or modelling approach was included for full-text review.

Table 1. Study inclusion/exclusion criteria

Inclusion	Exclusion
Article type	

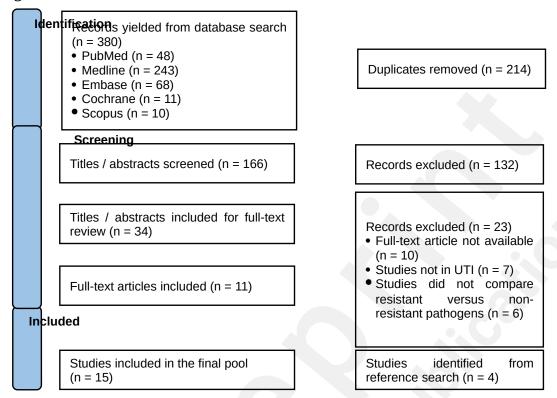
Clinical trials Observational designs (e.g. cohort study, case-control study) Modelling approach (e.g. economic evaluation)	Abstracts without full text Studies with small samples (e.g. case reports) Studies with no primary evidence (e.g. reviews, commentaries, editorials, or letters)				
Language					
English	Other languages				
PICO eligibility: Population					
Humans	Animals				
All ages	Environmental studies				
All sexes	Patients with HA-UTIs				
Patients with CA-UTIs	Patients with infections of other locations				
PICO eligibility: Intervention/exposure					
Infected by antibiotic-susceptible bacteria	Infected by virus				
Infected by antifungal-susceptible fungi	Infected parasites				
PICO eligibility: Comparison/control					
Infected by antibiotic-non-susceptible/resistant bacteria	Infected by virus				
Infected by antifungal-non-susceptible/resistant fungi	Infected parasites				
PICO eligibility: Outcomes					
Mortality	Other outcomes (e.g. patient satisfaction)				
Hospital LOS					
Direct and indirect medical costs					

Data extraction and analysis

Data were extracted from the included studies, including study identifier, authors, journal, publication year, study design, data collection period, country / region, healthcare setting, perspective (patient, health system (representing payer and / or provider), societal), patient population, number of patients, UTI diagnosis criteria, pathogen, sensitivity profile, treatment, and outcome. We synthesised the impact of ABR on health outcomes (e.g. mortality), healthcare system (e.g. hospital length of stay (LOS), medication cost), and economic system (e.g., productivity) and compared these for infections caused by resistant versus susceptible pathogens. The methods to estimate the cost-of-illness were categorised into top-down approach, for those studies that reported total costs on a population level irrespective of the specific method used to derive these costs; or bottom-up approach, for those studies that reported average costs derived from accumulating measured costs from patient samples.

A meta-analysis was performed to synthesise the reported mortality and hospital LOS using a random effect model [19]. A random effects model assumes that the true effect size of the exposure(s) varies from study to study due to the study heterogeneity. Particularly, heterogeneities in this type of analysis occurred in definitions and categories of costs across health systems, settings, and disease types, cost measurement instruments, and unit prices. Thus, a random effects model was chosen to allow aggregating cost data from different studies by circumventing this heterogeneity. When meta-analysing mortality, we estimated pooled odds ratio based on crude mortality rate [20]. When meta-analysing LOS, we applied both the transformationbased methods (i.e. estimating sample mean and standard deviation from the median and sample size) [21,22] and median-based methods (i.e., considering study-specific median differences and data distribution) [23], considering mean and variance, and median and interquartile range (IQR) were commonly used when reporting LOS, and the distribution of LOS was heavily right-tailed (e.g., not normally distributed) [24,25]. We assessed the publication bias for the mortality outcome using a funnel plot and Egger's test [26,27]. No meta-analysis was performed for economic costs due to the large variation in the resources costed and the methods used to determine the cost. To compare the reported monetary costs, the outcomes were converted into 2023 United States dollars (USD) by inflating the cost to 2023 original-currency estimates using annual inflation rates [28], then converting this into USD utilising 2023 average exchange rates [29].

Quality assessment


The included studies were assessed using the Integrated Quality Criteria for Review of Multiple Study Designs (ICROMS) tool [30].

Results

Study characteristics

A total of 380 titles and abstracts were yielded from the database search. 214 duplicates were removed, and 132 abstracts were deemed irrelevant. Thirty-four (34) studies entered the full-text review, of which, 11 studies were included. Through reference search, other 4 studies were identified and included in the final study pool. Figure 1 summarised the screening process in a PRISMA flowchart.

Figure 1. PRISMA flowchart

The characteristics of the 15 identified studies are present in Table 2 [12–14,31–42]. The countries which individually produced the highest number of studies were the US (33%, 5/15) [14,34,39,40,42], followed by Spain (20%, 3/15) [13,33,41], and South Korea (13%, 2/15) [31,37]. Thirteen (87%, 13/15) studies focused on hospitalised patients [12–14,31,33–37,39–42], and 2 (13%, 2/15) studies focused on primary care patients [32,38]. Thirteen (87%, 13/15) studies included adult patients of all genders [12–14,33–42], of which, 1 study included patients aged 65 and above [33]. Chang et al and Little et al (13%, 2/15) investigated adult female patients [31,32]. All hospital-based studies had UTI diagnosed via presence of symptoms, infection biomarkers, and microbiology culture confirmation, and differentiate community-acquired cases using the 48 hours cut-off time after admission. Two (13%, 2/15) studies reported HA-UTI [14,40]. The community-based study recruited the patient with urinary tract symptoms (suspected UTI) or history of dysuria and frequency [32,38]. In total, 57,251 CA-UTI cases were reported, 47,131 UTI cases were analysed (Supplementary material, Table S3).

Table 2 Study characteristics: data collection period, patient population, and identified pathogens

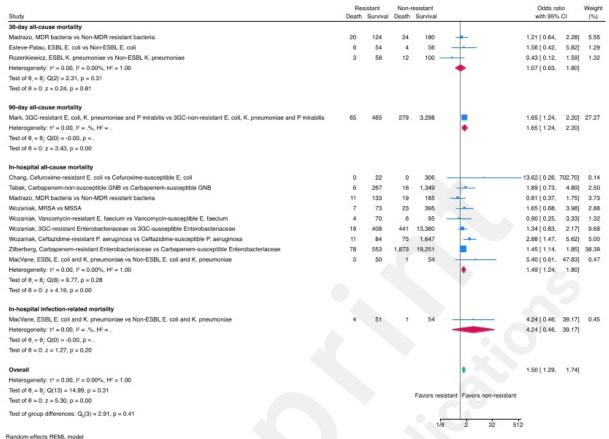
Study	Country Period Population		Organ	isms identified		
Study	Country	Periou	Population	Gram-negative	Gram-positive	Fungi
Chang,	South	Jan 2001	Hospitalised female patients with CO-APN	Escherichia coli		
2016 [31]	Korea	- Dec	defined by presence of fever (>=38.0°C), pyuria			
		2010	(5-10 leukocytes per HPF upon urine microscopic			
			examination), bacteriuria (>=105/ml clean voided			
			urine or >=104/ml catheterised urine)			
Sozen,	Turkey	Jul 2012 -	Hospitalised patients with positive urine culture	Enterobacter aerogenes		
2015 [12]		Jun 2014	< 48 hours of admission, without hospitalisation	Escherichia coli		
			or urological surgery during the last month	Klebsiella pneumoniae		
				Pseudomonas aeruginosa		
Little,	UK	Apr 2002	Female patients aged 17-70 recruited from	Not reported	·	

2009 [32]		- May	primary care practices with suspected UTI or a			
2007 [02]		2003	history of dysuria and frequency			
Tabak, 2018 [14]	US	- Sep		Citrobacter freundii		
		2015	pathogens isolated and tested for carbapenem susceptibility	Enterobacter cloacae Escherichia coli Klebsiella pneumoniae Morganella morganii Proteus mirabilis Pseudomonas aeruginosa		
N.4 - dua	C	I 004/	Harrist Could not only and a 15 with CALITY and	Serratia marcescens	Future serve for a lie	C 11 -1
Madrazo, 2021 [33]	Spain		Hospitalised patients aged >=65 with CA-UTI and positive urine culture	Enterobacter baumannii Enterobacter cloacae Escherichia coli Klebsiella oxytoca Klebsiella pneumoniae Proteus mirabilis Pseudomonas aeruginosa Other Enterobacteriaceae	Enterococcus faecalis Enterococcus faecium Enterococcus gallinarum Streptococcus agalactiae	Candida spp
Wozniak,	Australia		Hospitalised patients with positive urine culture		Enterococcus faecium	
2022 [35]		- Sep 2016	<48 hours of admission with >2 species identified (>105 CFUs/ml, 103/ml for cystitis, 104/ml for pyelonephritis)	·	Staphylococcus aureus	
Zilberber g, 2017 [42]	US	2009 - 2013	Hospitalised adult patients aged >=18 with CO- UTI defined by ICD-9 code, positive urine culture and antibiotic treatment beginning <48 hours of admission and continuing for at least 3 consecutive days or until discharge	Escherichia coli Enterobacter aerogenes Enterobacter cloacae Klebsiella oxytoca Klebsiella pneumoniae Morganella morganii Serratia marcescens Proteus mirabilis Proteus spp		
	1.10	1 0047	11. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Providencia spp		
Mark, 2021 [34]	US		Hospitalised patients aged >=18 with febrile UTI defined by fever, ICD-10 code of UTI, pyelonephritis, or sepsis, urine culture (EKP species >100,000 CFUs/ml)	Klebsiella pneumoniae		
Kim, 2013 [37]	South Korea	Mar 2010 - Feb 2011	Hospitalised patients admitting emergency department or outpatient clinic from the community with CA-APN defined by pyuria (>=5-9 WBC/HPF), fever (>=37.8°C), and positive urine culture collected at the time of admission	Enterobacter spp	Enterococcus spp Staphylococcus aureus	
François, 2016 [38]	France		Female patients aged >18 recruited from GP practices with UTI symptoms and followed up for 8 weeks	Escherichia coli		
Cheong, 2022 [36]	Korea	- Dec 2019	Hospitalised patients aged >=19 with ICD-10 code of CA-APN <48 hours of admission, defined by fever (>=37.8°C), pyuria (>=4-9 WBC/HPF), positive urine or blood culture, and symptoms or signs relevant to APN	Enterobacter spp Escherichia coli Klebsiella pneumoniae Proteus spp		
Macvane, 2013 [39]	US		Hospitalised patients >=18 with UTI present <=48 hours of admission defined by positive urine culture (>=10,000 CFUs)			
Esteve- Palau, 2015 [13]	Spain	- Jul 2013	Hospitalised patients >=18 with symptomatic CA- or CO-HA-UTI <=48 hours of admission including cystitis, pyelonephritis, acute prostatitis, and urosepsis, defined by increase of urinary frequency, urgency, dysuria, or suprapubic tenderness, a positive urine culture of Escherichia coli (>105 CFUs/ml)			
Rozenkie wicz, 2021 [41]	Spain		Hospitalised patients >=18 with symptomatic CA- UTI (identified <=48 hours of admission and not AHA) including cystitis, pyelonephritis, acute prostatitis, urinary sepsis, and confusion state associated with UTI, defined by fever (>38°C),	,		

			urinary urgency, polyuria, dysuria or suprapubic pain, a positive urine culture (>105 CFUs/ml)			
Cardwell,	US	Jul 2013	Hospitalised patients >=18 with fever, chills,	Citrobacter spp	Enterococcus spp	
2016 [40]		- Sep	rigors, nausea or vomiting, haematuria, altered	Enterobacter spp		
		2013	mental status, suprapubic or flank pain,	Escherichia coli		
			costovertebral angle tenderness, urinary	Klebsiella spp		
			frequency, urgency, or dysuria, and treatment for	Morganella spp		
			UTI <=24 hours of admission	Proteus spp		
				Providencia spp		
				Pseudomonas aeruginosa		
				Serratia spp		

Abbreviations: AHA: ambulatory healthcare-associated; APN: acute pyelonephritis; CA: community-acquired / associated; CFU: colony-forming unit; CO: community-onset; ESBL: extended spectrum beta-lactamase; General Practice: GP; HPF: high-power field; ICD: International Classification of Diseases; UTI: urinary tract infection; WBC: white blood cell.

Fourteen (93%, 14/15) studies reported the pathogens identified, of which, all reported Gram-negative bacteria (GNB) [12–14,31–42], four (29%, 4/14) reported Gram-positive bacteria (GPB) [33,35,37,40], one (7%, 1/14) reported fungi [33], three (21%, 3/14) exclusively reported UTI caused by E. coli [13,31,38], one (7%, 1/14) reported UTI caused by K. pneumoniae [41]. E. coli, K. pneumoniae, and P. aeruginosa are the most frequently identified organisms. Among the studies in specific antibiotic-pathogen combinations, 2 studies assessed Carbapenem-resistant organisms, specifically GNB and Enterobacteriaceae in each, respectively [14,42]. Mark et al examined E. coli, K. pneumoniae, and Proteus mirabilis (P. mirabilis) resistant to third-generation cephalosporin-resistant (3GC) [34], Sozen et al and Macvane et al examined ESBL- and/or inducible beta-lactamases (IBL)-producing GNB [12,39].


All the included studies estimated the clinical and economic outcomes from patients recruited from single or multiple health facilities. François et al provided a national-level estimate of the infection incidence and costs derived from the study cohort [38]. No study performed sensitivity analysis. The results of the quality assessment are presented in supplementary material (Supplementary material, Table S5). All studies met the minimum required score. Six (40%, 6/15) studies failed to meet the minimum required criteria [13,31,38,39,41,42].

The burden of antibiotic-resistant urinary tract infections

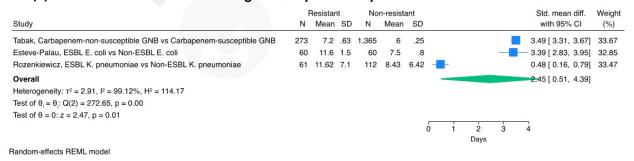
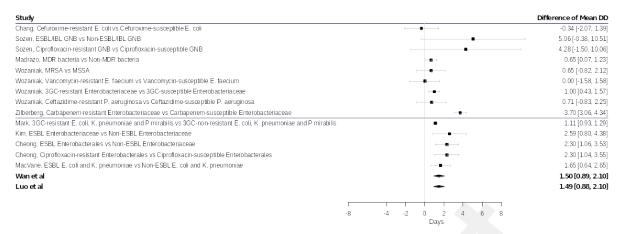
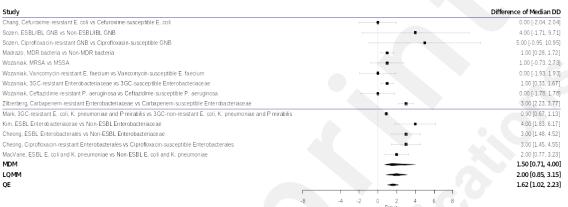
When quantifying the burden attributable to ABR, the included studies compared patient outcomes, health system outcomes, and economic costs of the CA-UTI cases caused by resistant pathogens against those caused by non-resistant pathogens. The most reported outcomes were mortality, hospital LOS, and economic costs due to antibiotic treatment (Supplementary material, Table S4). A health system perspective was taken by all bar 1 included studies when estimating the costs [12–14,31–42]. François et al took a society perspective and included productivity loss due to absenteeism [38]. When comparing the patients with resistant and non-resistant CA-UTIs, 4 studies matched case and control [13,14,39,42], 2 studies adjusted patient characteristics and other risk factors when reporting outcomes [34,36], other studies performed no matching or adjusting.

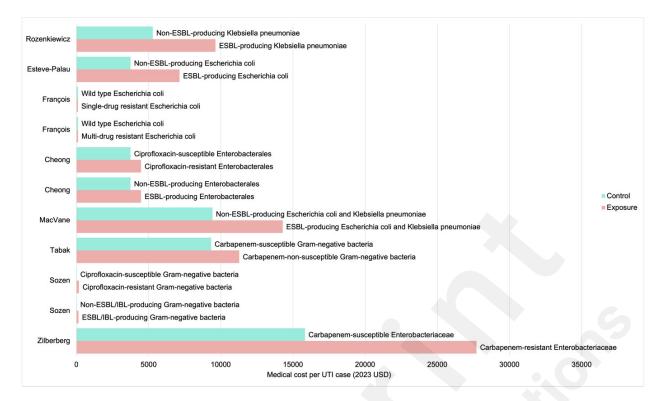
Twelve (12) studies reported mortality, including in-hospital all-cause mortality [14,31,33,35,39,42], in-hospital infection-related mortality [39], 30-day all-cause mortality [13,33,41], and 90-day all-cause mortality [34] (Supplementary material, Table S4(a)). Seven (7) studies reported higher crude mortality among the patients with antibiotic-resistant UTI [13,14,33–35,39,42], of which, 1 study demonstrated the statistical significance [42]. The pooled odds ratios of mortality outcomes for resistant UTIs are presented in Figure 2. Results presented odds ratios of resistant compared against non-resistant infections. The blue squares centred at the point estimate of the effect size, with horizontal lines depicting the 95% confidence interval (95% CI), and sizes of the blue squares corresponding to the patient group sizes. The overall effect sizes are represented by diamonds centred on their estimated values with the diamond width corresponding to the CI length. The random-effects model estimated an overall odds ratio of 1.50 (95% CI: 1.29, 1.74), suggesting that ABR increased the overall mortality. The subgroup analysis conducted for different mortality outcomes suggested increased odds of in-hospital all-cause mortality (Figure 2). No publication bias was detected for mortality (Supplementary material, Figure S1).

Figure 2. Pooled mortality of urinary tract infections

All 13 hospital-based studies reported LOS [12–14,31,33–37,39–42], among which, 11 reported significantly higher LOS associated with antibiotic-resistant UTIs (Supplementary material, Table S4(b)) [12–14,33–37,39,41,42]. Cardwell et al reported higher LOS among the patients with clinical failure due to inappropriate antibiotic therapies for resistant infections [40]. The meta-analysis of studies reported LOS in mean and SD estimated a pooled excess LOS of 2.45 days (95% CI: 0.51 – 4.39) (Figure 3(a)). The meta-analysis of studies reported LOS in median and IQR estimated a pooled excess LOS ranged from the lowest value of 1.50 days (95% CI: 0.71, 4.00) estimated by the median of the differences of medians (MDM) method to the highest value of 2.00 days (95% CI: 0.85, 3.15) estimated by the linear quantile mixed models (LQMM) method (Figure 3(a)).

Figure 3(a). Pooled mean difference in length of stay of urinary tract infections


Figure 3(b). Pooled median difference in length of stay of urinary tract infections

Eight (8) studies reported costs in monetary terms (Supplementary material, Table S4(c)) [12–14,36,38,39,41,42], including 5 that reported costs in USD [12,14,36,39,42], and 3 reported costs in Euros [13,38,41]. None of the included studies discounted the costs. Considering only two studies explicitly stated the year of which the costs were adjusted to [12,38], the end year of data collection period was used to convert the reported costs into 2023 USD. Eight (8) studies reported direct medical costs incurred in secondary care, including emergency department costs [13,34], and additionally OPAT costs in one study [13,34]. All these 8 studies reported higher medical costs spent treating patients with resistant UTI in hospitals. The highest excess cost was observed in UTI caused by Carbapenem-resistant Enterobacteriaceae [42]. François et al reported costs incurred in primary care, specifically, the costs of GP visits due to UTI symptoms. The primary care costs of single- or multi-drug resistant *E. coli* UTI were not significantly higher than those caused by susceptible *E. coli*.

Figure 4. Medical cost of antibiotic-resistant urinary tract infections

Discussion

This review concluded that there is an economic burden attributable to ABR in CA-UTIs, including the costs of patients, health systems, and at societal level. The review included 15 studies, over-represented by the research from high-income countries, hospital settings, and infections caused by *E. coli* and *K. pneumoniae*. All studies were cross-sectional with limited patient sample size. No sensitivity analysis was performed to quantify the level of uncertainty in the results. The meta-analysis provided pooled estimates of odds ratio of mortality and mean difference in hospital LOS. The reported variation in economic costs were also synthesised.

We found that no systematic review in the economic burden of ABR in CA-UTI has been previously conducted. The increased mortality among the patients with ABR CA-UTI in this review was less profound, as opposed to the existing research in other types of infections, such as bacteraemia [41–43] or healthcareassociated UTIs [44]. Overall, ABR attributes to an increased odds ratio of mortality of 1.50. The increased odds of mortality can be explained by higher risk of treatment failure and UTI complications, such as bacteraemia and sepsis. The varied types of mortality outcomes reported reduced the comparability across studies. Most of the hospital-based studies reported a longer LOS experienced by the patients in the ABR group. We used multiple modelling methods to meta-analyse hospital LOS and estimated the excess duration of hospitalisation ranged from 1.50 to 2.45 days. All the studies that captured the costs in monetary terms reported excess medical costs in the ABR group, with the highest excess medical costs of 11,884.32 USD per case of CA-UTI caused by Carbapenem-resistant Enterobacteriaceae [43–45][46]. The findings of this review highlighted the scarcity of research in quantifying the economic burden of ABR, particularly in four areas. First, besides mortality, evidence in other types of patient burden associated with ABR is lacking, such morbidity (clinical failure, time to clinical stability, secondary infections) and chronic sequelae (recurrent infections). Second, existing research has been restricted to those cases present in the hospitals, the cases managed, and the costs incurred in primary care settings were not captured. However, the pathogen distributions and treatment options varied substantially for HA- and CA-UTIs, and for CA-UTIs managed in the community and in hospitals, community-based investigation is urgently needed to generate a comprehensive understanding across the whole-health economy [43,44]. Third, the types of medical resources costed remained largely inconsistent, which further reduced the validity of the excess costs estimated. Last, all the identified studies were limited in patient cohort size and follow-up duration and lacking analysis to address uncertainty, which led to the concerns of how generalisable the results were.

This review has two limitations. First, we only searched studies published in English. Second, we did not include those studies which the primary focus was to perform economic evaluation of CA-UTI treatment or

prevention measures and included estimated costs of drug-resistant cases. These limitations provided the scope for further research.

There are pressing needs to build understanding of the economics of AMR. The evidence to provide a full economic case for interventions tackling AMR is lacking. In this review, we identified knowledge and methodological gaps in existing research particularly relevant to quantify costs associated with ABR that occurred in the community. Future research calls for cost-of-illness analysis of infections standardising therapy-pathogen combination comparators, medical resources, productivity loss, and intangible costs to be captured, and data from community sectors and low-resourced settings and countries.

Notes

Author Contributions

NZ and PA developed the concept and methodology for this research. NZ and WM undertook literature search and screening and data extraction. NZ conducted meta-analysis. NZ, WM, and EC performed quality assessment. NZ drafted the initial manuscript. NZ, EC, WM, HWA, CB, AH, and PA contributed to data interpretation, revision of the manuscript and finalisation for submission. PA is the guarantor of the study. The corresponding author attests that all listed authors meet the ICMJE criteria for authorship and that no other meeting the criteria have been omitted.

Transparency statement

The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Disclaimer

The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research, the Department of Health and Social Care, or UK Health Security Agency. No generative artificial intelligence (AI) was used in any portion of the manuscript writing.

Acknowledgements

This research was funded by 1) the National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Healthcare Associated Infections and Antimicrobial Resistance (HCAI & AMR) at Imperial College London in partnership with the UK Health Security Agency (UKHSA, previously Public Health England (PHE)), in collaboration with, Imperial College Health Partners (ICHP), University of Cambridge and University of Warwick, and 2) the Department of Health and Social Care (DHSC), who funded Centre for Antimicrobial Optimisation (CAMO) at Imperial College London. AH is a NIHR Senior Investigator. PA is supported by the NIHR Applied Research Collaboration Northwest London. This report is independent research funded by the NIHR. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR, DHSC, or UKHSA.

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files. Additional information about this review can be found on PROSPERO (Registration number CRD42023374551).

Conflicts of Interest

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest (available on request from the corresponding author).

References

The National Institute for Health and Care Excellence. Urinary tract infection (lower) - women. Clinical Knowledge Summaries (CKS). 2023. https://cks.nice.org.uk/topics/urinary-tract-infection-lower-women/ (accessed 14 October 2023)

- Gharbi M, Drysdale JH, Lishman H, *et al.* Antibiotic management of urinary tract infection in elderly patients in primary care and its association with bloodstream infections and all cause mortality: Population based cohort study. *BMJ* (*Online*). Published Online First: 2019. doi: 10.1136/bmj.l525
- Shallcross L, Rockenschaub P, Blackburn R, *et al.* Antibiotic prescribing for lower UTI in elderly patients in primary care and risk of bloodstream infection: A cohort study using electronic health records in England. *PLoS Med.* 2020;17. doi: 10.1371/journal.pmed.1003336
- 4 Woodford HJ, George J. Diagnosis and management of urinary tract infection in hospitalized older people. *J Am Geriatr Soc.* 2009;57:107–14.
- Menting SGP, Redican E, Murphy J, *et al.* Primary Care Antibiotic Prescribing and Infection-Related Hospitalisation. *Antibiotics*. 2023;12:1685. doi: 10.3390/antibiotics12121685
- 6 UK Health Security Agency. English surveillance programme for antimicrobial utilisation and resistance (ESPAUR) Report 2021 to 2022. 2022.
- Lishman H, Costelloe C, Hopkins S, *et al.* Exploring the relationship between primary care antibiotic prescribing for urinary tract infections, Escherichia coli bacteraemia incidence and antimicrobial resistance: an ecological study. *Int J Antimicrob Agents*. Published Online First: 2018. doi: 10.1016/j.ijantimicag.2018.08.013
- 8 Kahlmeter G, Ahman J, Matuschek E. Antimicrobial Resistance of Escherichia coli Causing Uncomplicated Urinary Tract Infections: A European Update for 2014 and Comparison with 2000 and 2008. *Infect Dis Ther* . 2015;4:417–23.
- 9 Bou-Antoun S, Davies J, Guy R, *et al.* Descriptive epidemiology of Escherichia coli bacteraemia in England, april 2012 to march 2014. *Eurosurveillance*. Published Online First: 2016. doi: 10.2807/1560-7917.ES.2016.21.35.30329
- Öztürk R, Murt A. Epidemiology of urological infections: a global burden. *World J Urol.* 2020;38:2669–79. doi: 10.1007/s00345-019-03071-4
- Yang X, Chen H, Zheng Y, *et al.* Disease burden and long-term trends of urinary tract infections: A worldwide report. *Front Public Health.* 2022;10. doi: 10.3389/fpubh.2022.888205
- Sozen H, Caylak S, Cetinkaya M, *et al.* Clinical and Economic Outcomes Associated with Urinary Tract Infections Caused by Extended Spectrum Beta-lactamase Producing Bacteria in a Tertiary Care Hospital. *Studies on Ethno-Medicine*. 2015;9:173–9. doi: 10.1080/09735070.2015.11905432
- Esteve-Palau E, Solande G, Sánchez F, *et al.* Clinical and economic impact of urinary tract infections caused by ESBL-producing Escherichia coli requiring hospitalization: A matched cohort study. *Journal of Infection*. 2015;71:667–74. doi: 10.1016/j.jinf.2015.08.012
- Tabak YP, Sung AH, Ye G, *et al.* Attributable clinical and economic burden of carbapenem-non-susceptible Gram-negative infections in patients hospitalized with complicated urinary tract infections. *Journal of Hospital Infection*. 2019;102:37–44. doi: 10.1016/j.jhin.2018.11.018
- 15 UK Department of Health and Social Care. UK 5-year action plan for antimicrobial resistance 2019 to 2024. 2019. 14/10/2023https://www.gov.uk/government/publications/uk-5-year-action-plan-for-antimicrobial-resistance-2019-to-2024
- Yang X, Chen H, Zheng Y, *et al.* Disease burden and long-term trends of urinary tract infections: A worldwide report. *Front Public Health.* 2022;10. doi: 10.3389/fpubh.2022.888205
- Turner D, Little P, Raftery J, *et al.* Cost effectiveness of management strategies for urinary tract infections: results from randomised controlled trial. *BMJ*. 2010;340:c346–c346. doi: 10.1136/bmj.c346
- Moher D, Liberati A, Tetzlaff J, *et al.* Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097

Hedges L V., Vevea JL. Fixed- and random-effects models in meta-analysis. *Psychol Methods*. 1998;3:486–504. doi: 10.1037/1082-989X.3.4.486

- 20 Chang B-H, Hoaglin DC. Meta-Analysis of Odds Ratios. *Med Care*. 2017;55:328–35. doi: 10.1097/MLR.000000000000696
- Luo D, Wan X, Liu J, *et al.* Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. *Stat Methods Med Res.* 2018;27:1785–805. doi: 10.1177/0962280216669183
- Wan X, Wang W, Liu J, *et al*. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol*. 2014;14:135. doi: 10.1186/1471-2288-14-135
- McGrath S, Sohn H, Steele R, *et al.* Meta-analysis of the difference of medians. *Biometrical Journal*. 2020;62:69–98. doi: 10.1002/bimj.201900036
- Williford E, Haley V, McNutt LA, *et al.* Dealing with highly skewed hospital length of stay distributions: The use of Gamma mixture models to study delivery hospitalizations. *PLoS One.* 2020;15. doi: 10.1371/JOURNAL.PONE.0231825
- Harini S, Subbiah M, Srinivasan MR. Fitting length of stay in hospitals using transformed distributions. *Commun Stat Case Stud Data Anal Appl.* 2018;4:1–8. doi: 10.1080/23737484.2018.1445979
- Egger M, Smith GD, Schneider M, *et al.* Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629–34. doi: 10.1136/bmj.315.7109.629
- 27 Lin L, Chu H. Quantifying Publication Bias in Meta-Analysis. *Biometrics*. 2018;74:785–94. doi: 10.1111/biom.12817
- U.S. Inflation Calculator: 1635 → 2023, Department of Labor data. https://www.in2013dollars.com/ (accessed 14 October 2023)
- 29 International Monetary Fund. Exchange Rate Report. https://www.imf.org/external/np/fin/ert/GUI/Pages/CountryDataBase.aspx (accessed 14 October 2023)
- Zingg W, Castro-Sanchez E, Secci F V., *et al.* Innovative tools for quality assessment: integrated quality criteria for review of multiple study designs (ICROMS). *Public Health*. 2016;133:19–37. doi: 10.1016/J.PUHE.2015.10.012
- Chang UI, Kim HW, Wie SH. Use of cefuroxime for women with community-onset acute pyelonephritis caused by cefuroxime-susceptible or -resistant Escherichia coli. *Korean Journal of Internal Medicine*. 2016;31:145–55. doi: 10.3904/kjim.2016.31.1.145
- Little P, Turner S, Rumsby K, *et al.* Dipsticks and diagnostic algorithms in urinary tract infection: Development and validation, randomised trial, economic analysis, observational cohort and qualitative study. *Health Technol Assess (Rockv)*. 2009;13. doi: 10.3310/hta13190
- Madrazo M, Esparcia A, López-Cruz I, *et al*. Clinical impact of multidrug-resistant bacteria in older hospitalized patients with community-acquired urinary tract infection. *BMC Infect Dis*. 2021;21. doi: 10.1186/s12879-021-06939-2
- Mark DG, Hung YY, Salim Z, *et al.* Third-Generation Cephalosporin Resistance and Associated Discordant Antibiotic Treatment in Emergency Department Febrile Urinary Tract Infections. *Ann Emerg Med.* 2021;78:357–69. doi: 10.1016/j.annemergmed.2021.01.003
- Wozniak TM, Dyda A, Lee X. The Increased Length of Hospital Stay and Mortality Associated With Community-Associated Infections in Australia. *Open Forum Infect Dis.* 2022;9. doi: 10.1093/ofid/ofac133
- Cheong T, Ahn J, Kim YS, *et al.* Quantitative Evaluation of the Economic Impact of Antimicrobial Resistance on the Treatment of Community-Acquired Acute Pyelonephritis in Korea. *Infect Chemother.* 2022;54. doi: 10.3947/IC.2022.0057
- Kim B, Kim J, Seo MR, *et al.* Clinical characteristics of community-acquired acute pyelonephritis caused by ESBL-producing pathogens in South Korea. *Infection*. 2013;41:603–12. doi:

10.1007/s15010-013-0441-z

François M, Hanslik T, Dervaux B, *et al.* The economic burden of urinary tract infections in women visiting general practices in France: A cross-sectional survey. BMC Health Serv Res. 2016;16.

- 39 Macvane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. *J Hosp Med*. 2014;9:232–8. doi: 10.1002/jhm.2157
- Cardwell SM, Crandon JL, Nicolau DP, *et al.* Epidemiology and economics of adult patients hospitalized with urinary tract infections. *Hosp Pract* (1995). 2016;44:33–40. doi: 10.1080/21548331.2016.1133214
- Rozenkiewicz D, Esteve-Palau E, Arenas-Miras M, *et al.* Clinical and economic impact of community-onset urinary tract infections caused by esbl-producing klebsiella pneumoniae requiring hospitalization in spain: An observational cohort study. *Antibiotics*. 2021;10. doi: 10.3390/antibiotics10050585
- Zilberberg MD, Nathanson BH, Sulham K, *et al.* Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. *BMC Infect Dis.* 2017;17. doi: 10.1186/s12879-017-2383-z
- 43 McLeod M, Ahmad R, Shebl NA, *et al.* A whole-health–economy approach to antimicrobial stewardship: Analysis of current models and future direction. *PLoS Med.* 2019;16. doi: 10.1371/journal.pmed.1002774
- Murray CJ, Ikuta KS, Sharara F, *et al.* Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *The Lancet*. 2022;399:629–55. doi: 10.1016/S0140-6736(21)02724-0

Supplementary Material

Table S1 PRIMSA checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1: Title
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 2: Abstract
INTRODUCTI	ON		<u> </u>
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 3: Introduction
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 3: Introduction
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 4: Methods – Study selection, Table 1
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 4: Methods - Search methods
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 18: Supplementary Material, Table S2
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 4: Methods – Study selection
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 4: Methods - Data extraction and analysis
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 4: Methods - Data extraction and analysis Page 18: Supplementary Material, Table S4(a)(b)(c)
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 4: Methods – Data extraction and analysis Page 18: Supplementary Material, Table S3
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5: Methods – Quality assessment Page 24: Supplementary Material Page 25: Table S5
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 4: Methods – Data extraction and analysis
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 4: Methods – Data extraction and analysis
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 4: Methods – Data extraction and analysis
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 4: Methods – Data extraction and analysis
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 4: Methods – Data extraction and analysis
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 4: Methods - Data extraction and analysis
	13f	Describe any sensitivity analyses conducted to assess robustness of the	Page 4: Methods - Data

Section and Topic	Item #	Checklist item	Location where item is reported
Topic	"	synthesized results.	extraction and analysis
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 5: Methods – Quality assessment Page 24: Supplementary Material, Table S5
Certainty assessment	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. Page 5: Methods used to assess certainty (or confidence) in the body of evidence for an outcome. Page 24: Supp		·
RESULTS		À .	
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 5: Results - Study characteristics, Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 5: Results – Study characteristics, Figure 1
Study characteristics	17	Cite each included study and present its characteristics.	Page 6: Study characteristics, Table 2 Page 18: Supplementary Material, Table S3
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Page 7: Results - Study characteristics Page 24: Supplementary Material, Table S5, Figure S1
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Page 7: Results - The burden of antibiotic- resistant urinary tract infections Page 18: Supplementary Material, Table S4(a)(b)(c)
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 7: Results - The burden of antibiotic-resistant urinary tract infections
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 7: Results - The burden of antibiotic- resistant urinary tract infections, Figure 2(a)(b), Figure 3(a)(b), Figure 4
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 7: Results - The burden of antibiotic- resistant urinary tract infections
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Page 7: Results - The burden of antibiotic- resistant urinary tract infections, Figure 2(a)(b), Figure 3(a)(b)
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Page 7: Results - Study characteristics Page 24: Supplementary
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Material, Table S5 Page 7: Results - Study characteristics Page 24: Supplementary Material, Table S5

Section and Topic	Item #	Checklist item	Location where item is reported
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 10: Discussion
	23b	Discuss any limitations of the evidence included in the review.	Page 11: Discussion
	23c	Discuss any limitations of the review processes used.	Page 11: Discussion
	23d	Discuss implications of the results for practice, policy, and future research.	Page 11: Discussion
OTHER INFO	RMATI	ON	
Registration and protocol			Page 2: Trial Registration Page 3: Methods
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 3: Methods
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Page 3: Methods
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 11: Notes
Competing interests	Competing 26 Declare any competing interests of review authors.		Page 11: Notes
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Page 11: Notes

Table S2 Database search strings

Search terms	Results
PubMed	
1 "Community-acquired"[Title/Abstract] OR "Community-onset"[Title/Abstract] OR "general practice"[Title/Abstract] OR "primary care"[Title/Abstract]	197,781
2 "Urine"[Title/Abstract] OR "urinary tract infection"[Title/Abstract] OR "urethra infection"[Title/Abstract] OR "Urethritis"[Title/Abstract] OR "bladder infection"[Title/Abstract] OR "Cystitis"[Title/Abstract] OR "Cystalgia"[Title/Abstract] OR "Bacteriuria"[Title/Abstract] OR "Bacilluria"[Title/Abstract] OR "Pyuria"[Title/Abstract] OR "Dysuria"[Title/Abstract] OR "Pyelonephritis"[Title/Abstract] OR "Leukocyturia"[Title/Abstract]	190,676
3 "Resistant"[Title/Abstract] OR "Drug-resistant"[Title/Abstract] OR "multi drug resistant"[Title/Abstract] OR "antimicrobial resistant"[Title/Abstract] OR "antibiotic resistant"[Title/Abstract] OR "antibacterial resistant"[Title/Abstract] OR "non susceptible"[Title/Abstract]	
4 "Cost" [Title/Abstract] OR "economic" [Title/Abstract] OR "burden" [Title/Abstract] OR "mortality" [Title/Abstract] OR "length of stay" [Title/Abstract] OR "length of hospitali*" [Title/Abstract] OR "duration of stay" [Title/Abstract] OR "duration of hospitali*" [Title/Abstract] OR "productivity" [Title/Abstract]	
5 #1 AND #2 AND #3 AND #4	72
6 Limit #5 to English only	72
7 Limit #6 to human only	56
8 Limit #7 to 2018/1/1 - 2023/1/31	48
MEDLINE	i
1 ("Community-acquired" or "Community-onset" or "General practice" or "Primary care").at,ab.	498,525
2 (Urine or "Urinary tract infection" or Urethra or "infection Urethritis" or "Bladder infection" or Cystitis or Cystalgia or Bacteriuria or Bacilluria or Pyuria or Dysuria or Pyelonephritis or Leukocyturia).at,ab.	873,465
3 (Resistant or Drug-resistant or Multi-drug resistant or Antimicrobial resistant or Antibiotic resistant or Antibacterial resistant or Non susceptible).at,ab.	1,378,867
4 (Cost or economic or burden or mortality or "length of stay" or "length of hospitali*" or "duration of stay" or "duration of hospitali*" or productivity).at,ab.	5,685,370
5 1 and 2 and 3 and 4	277
6 Limit 5 to English language	271
7 Limit 6 to human	256
8 Limit 7 to dt=20120101-20230131 [January 1st, 2012 to January 31st, 2023]	243
Embase	
1 ("Community-acquired" or "Community-onset" or "General practice" or "Primary care").at,ab.	219,111
2 (Urine or "Urinary tract infection" or Urethra or "infection Urethritis" or "Bladder infection" or Cystitis or Cystalgia or Bacteriuria or Bacilluria or Pyuria or Dysuria or Pyelonephritis or Leukocyturia).at,ab.	453,850
3 (Resistant or Drug-resistant or Multi-drug resistant or Antimicrobial resistant or Antibiotic resistant or Antibacterial resistant or Non susceptible).at,ab.	641,820
4 (cost or economic or burden or mortality or length of stay or length of hospitali* or	2,720,943

	duration of stay or duration of hospitali* or productivity).at,ab.	
5	1 and 2 and 3 and 4	123
6	Limit 5 to English language	119
7	Limit 6 to human	117
8	Limit 7 to dd=20120101-20230131 [January 1st, 2012 to January 31st, 2023]	68
Co	chrane	
1	("Community-acquired" or "Community-onset" or "General practice" or "Primary care"):ti,ab	26,496
2	(Urine or "Urinary tract infection" or Urethra or "infection Urethritis" or "Bladder	40,746
	infection" or Cystitis or Cystalgia or Bacteriuria or Bacilluria or Pyuria or Dysuria or	40,740
F	Pyelonephritis or Leukocyturia):ti,ab	0/ 110
3	(Resistant or Drug-resistant or Multi-drug resistant or Antimicrobial resistant or Antibiotic resistant or Antibacterial resistant or Non susceptible):ti,ab	26,112
4	(cost or economic or burden or mortality or length of stay or length of hospitali* or	190,072
	duration of stay or duration of hospitali* or productivity):ti,ab	
5	#1 and #2 and #3 and #4	15
6	#5 with Cochrane Library publication date from Jan 2012 to Jan 2023	11
Sc	opus	
1	TITLE-ABS ("community-acquired" OR "community-onset" OR "general practice" OR "primary care")	225,402
2	TITLE-ABS (urine OR "Urinary tract infection" OR urethra OR "infection Urethritis" OR "Bladder infection" OR cystitis OR cystalgia OR bacteriuria OR bacilluria OR pyuria OR dysuria OR pyelonephritis OR leukocyturia)	421,005
3	TITLE-ABS (resistant OR "Drug-resistant" OR "Multi-drug resistant" OR "Antimicrobial resistant" OR "Antibiotic resistant" OR "Antibacterial resistant" OR "Non susceptible")	786,611
4	TITLE-ABS (cost OR economic OR burden OR mortality OR length of stay OR length of hospitali* OR duration of stay OR duration of hospitali* OR productivity)	34,989
5	#1 AND #2 AND #3 AND #4	13
6	Language (English)	13
7	((PUBYEAR > 2012) AND (PUBYEAR < 2023))	10

Table S3 Study characteristics: urinary tract infection criteria, incidence, and causative pathogens

				UTI	Causative pathogens (n, %)		
	Study	UTI (n)	Further inclusion / exclusion criteria	analysed (n)	Escherichia coli	Klebsiella species	Pseudomonas aeruginosa
1	Chang	328		328	328		
2	Sozen	82		82	69	10	3
3	Little	839	With mid-stream urine specimen, symptoms and duration, and antibiotic resistance status available	511	Not reported		
4	Tabak	7171	Propensity score matched carbapenem susceptible (C-S) and carbapenem non-susceptible (C-NS) cases		335	Not reported	397
5	Madrazo	388		388	219	52	28
6	Wozniak	16,737		16,737	14,247 (Escherichia co	Enterobacteriaceae li and Klebsiella spp)	1,817
7	Zilberberg	21,755	Matched carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-susceptible Enterobacteriaceae (CSE) cases	21,755 (631 CRE vs 21,124 CSE)	Not reported		5
8	Mark	5922	Caused by EKP pathogens (Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis)	4113	Not reported	3:0	
9	Kim	557		557	497	18	6
10	François	460	Confirmed by positive culture	345	267	Not reported	
11	Cheong	241	Caused by Enterobacteriales	241	217 (90.0%)	13 (5.4%)	Not reported
12	MacVane	2345	Matched ESBL-producing and non-ESBL producing cases	55	44	8	
13	Esteve-Palau	120		120	120		
14	Rozenkiewicz	173		173		173	
15	Cardwell	133	Confirmed by positive culture	88	51	10	Not reported

Table S4(a) Reported mortality

	Com	parator	Infe	ction	Morta	ality	Crude mortality rate (%)			
Study	Exposure	Control	Exposure (n)	Control (n)	Exposure (n)	Control (n)	Exposure (%)	Control (%)	p- value	
		In-hospital all-	ause morta	lity	•					
Chang	Cefuroxime-resistant E. coli	Cefuroxime-susceptible E. coli	22	306	0	0	0.0%	0.0%	-	
Tabak	Carbapenem-non- susceptible GNB	Carbapenem- susceptible GNB	273	1365	6	16	2.2%	1.2%	-	
Madrazo	MDR	Non-MDR	144	204	11	19	7.6%	9.3%	0.699	
Wozaniak	MRSA	MSSA	80	418	7	23	8.8%	5.5%	-	
Wozaniak	Vancomycin-resistant E. faecium	Vancomycin-susceptible E. faecium	74	101	4	6	5.4%	5.9%	-	
Wozaniak	3GC-resistant Enterobacteriaceae	3GC-susceptible Enterobacteriaceae	426	13,821	18	441	4.2%	3.2%	-	
Wozaniak	Ceftazidime-resistant P. aeruginosa	Ceftazidime-susceptible P. aeruginosa	95	1,722	11	75	11.6%	4.4%	-	
Zilberberg	Carbapenem- resistant Enterobacteriaceae	Carbapenem- susceptible Enterobacteriaceae	631	21,124	78	1,873	12.4%	8.9%	0.002	
MacVane	ESBL-producing EK	BBL-producing EK Non-ESBL-producing EK		55	5	1	9.1%	1.8%	0.21	
	'	In-hospital infectio	n-related m	ortality						
MacVane	ESBL-producing EK	Non-ESBL-producing EK	55	55	4	1	7.3%	1.8%	0.37	
		30-day all-ca	use mortalit	.y						
Madrazo	MDR	Non-MDR	144	204	20	24	13.9%	11.8%	0.624	
Esteve-Palau	ESBL-producing E. coli*	Non-ESBL-producing E. coli	60	60	6	4	10.0%	6.7%	0.74	
Rozenkiewicz	ESBL-producing K. pneumoniae*	Non-ESBL-producing K. pneumoniae	61	112	3	12	4.9%	10.7%	0.263	
	•	90-day all-ca	use mortalit	.y						
Mark	3GC-resistant EKP	3GC-non-resistant EKP	530	3,577	65	279	12.3%	7.8%	-	
ported with HCA-U	JTI and CA-UTI combined	d				_				

Abbreviations: GNB: Gram-negative bacteria; MDR: multi-drug resistant; MRSA: Methicillin-resistant Staphylococcus aureus; MSSA: Methicillin-susceptible Staphylococcus aureus; 3GC: third-generation cephalosporin; ESBL: Extended Spectrum Beta-Lactamase; E. coli: Escherichia coli; E. faecium: Enterococcus faecium; P. aeruginosa: Pseudomonas aeruginosa; K. pneumoniae: Klebsiella pneumoniae; EK: Escherichia coli and Klebsiella species; EKP: Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis.

Table S4(b) Reported hospital length of stay (LOS)

	Com	parator	Infect	ion	Hospital LOS					
Study	Exposure	Control	Exposure (n)	Control (n)	Exposure (days) (median, IQR)	Control (days) (median, IQR)	p-value			
Chang	Cefuroxime-resistant E. coli	Cefuroxime-susceptible E. coli	22	306	10 (8 - 13)	10 (8 - 14)	0.319			
Sozen	ESBL/IBL positive GNB	ESBL/IBL negative GNB	45	43	9 (3 - 24)	5 (2 - 14)	0.001			
Sozen	Ciprofloxacin- resistant GNB	Ciprofloxacin- susceptible GNB	48	40	9 (3 - 24)	4 (2 - 17)	0.001			
Tabak	Carbapenem-non- susceptible GNB	Carbapenem- susceptible GNB	273	1365	Mean: 7.2	Mean: 6.0	< 0.001			
Madrazo	MDR	Non-MDR	144	208	6 (4 - 8)	5 (4 - 7)	0.029			
Wozaniak	MRSA	MSSA	80	418	6.5 (4 - 12.3)	6 (3 - 12)	-			
Wozaniak	Vancomycin-resistant E. faecium	Vancomycin-susceptible E. faecium	74	101	6.5 (4 - 10.7)	7 (4 - 11)	-			
Wozaniak	3GC-resistant Enterobacteriaceae	3GC-susceptible Enterobacteriaceae	426	13,821	6 (3 - 11)	5 (3 - 9)	-			
Wozaniak	Ceftazidime-resistant P. aeruginosa	Ceftazidime-susceptible P. aeruginosa	95	1,722	6 (3 - 12.5)	6 (3 - 11)	-			
Zilberberg	Carbapenem- resistant Enterobacteriaceae	Carbapenem- susceptible Enterobacteriaceae	631	21,124	10 (6 - 17) Mean (SD): 14.6 (15.9)	7 (4 - 11) Mean (SD): 9.0 (9.4)	< 0.001			
Mark	3GC-resistant EKP	3GC-non-resistant EKP	530	3,577	88.8h (64.8 - 132.0) Mean (SD): 115.4 (117.8)	67.2h (45.6 - 93.6) Mean (SD): 87.1 (98.6)	-			
Kim	ESBL-producing Enterobacteriaceae	Non-ESBL-producing Enterobacteriaceae	46	480	10.5 (5.8 - 14.3)	7 (6 - 10)	0.012			
Cheong	ESBL-producing Enterobacterales	Non-ESBL-producing Enterobacterales	75	166	11 (8 - 14)	8 (6 - 12)	< 0.001			
Cheong	Ciprofloxacin- resistant Enterobacterales	Ciprofloxacin- susceptible Enterobacterales	87	154	11 (7 - 14)	8 (6 - 11)	< 0.001			
MacVane	ESBL-producing EK	Non-ESBL-producing EK	55	55	6 (4 - 8)	4 (3 - 6)	0.02			
Esteve-Palau	ESBL-producing E. coli**	Non-ESBL-producing E. coli	60	60	Mean (SD): 11.6 (1.5)	Mean (SD): 7.5 (0.8)	0.02			
Rozenkiewicz	ESBL-producing K. pneumoniae**	Non-ESBL-producing K. pneumoniae	61	112	Mean (SD): 11.62 (7.1)	Mean (SD): 8.43 (6.42)	0.003			
Cardwell	CA-UTI with appropriate empirical therapy	CA-UTI with inappropriate empirical therapy	Not reported	Not reported	4 (3-6)***	3 (4-10)***	0.79			

^{**}Reported with HCA-UTI and CA-UTI combined

Abbreviations: GNB: Gram-negative bacteria; MDR: multi-drug resistant; MRSA: Methicillin-resistant Staphylococcus aureus; MSSA: Methicillin-susceptible Staphylococcus aureus; 3GC: third-generation cephalosporin; ESBL: Extended Spectrum Beta-Lactamase; E. coli: Escherichia coli; E. faecium: Enterococcus faecium; P. aeruginosa: Pseudomonas aeruginosa; K. pneumoniae: Klebsiella pneumoniae; EK: Escherichia coli and Klebsiella species; CA-UTI: community-acquired urinary tract infection.

Table S4(c) Reported economic costs

Study	Comparator		Infed	ction	Costed items		Year to convert from		
	Exposure	Control	Exposure (n)	Control (n)		Exposure (mean, 95 % CI)	Control (mean, 95 % CI)	p-value	
Sozen	ESBL/IBL positive GNB	ESBL/IBL negative GNB	45	43	Antibiotic treatment	Median (IQR): \$110.6 (5.5-505.2)	Median (IQR): \$19.8 (6.5-384.2)	0.001	2014
Sozen	Ciprofloxacin- resistant GNB	Ciprofloxacin- susceptible GNB	48	40	Antibiotic treatment	Median (IQR): \$135.1 (5.5 - 505.2)	Median (IQR): \$19.8 (6.56 - 234.6)	0.001	2014
Tabak	Carbapenem-non- susceptible GNB	Carbapenem- susceptible GNB	273	1,365	Unspecified	\$8,743	\$7,231, p < 0.001	< 0.001	2015
Zilberberg	Carbapenem- resistant Enterobacteriaceae	Carbapenem- susceptible Enterobacteriaceae	631	21,124	Unspecified	\$33,400 (SD: 37,662) Median (IQR): 21,154 (12,687 - 39,374, p < 0.001)	\$19,036 (SD: 24,494) Median (IQR): 12,082 (7,104 - 21,822, p < 0.001)	< 0.001	2013
Cheong	ESBL-producing Enterobacterales	Non-ESBL-producing Enterobacterales	75	166	Consultation fee Hospitalisation expenditures Meal	Median (IQR): \$3,730.2 (2,928.9 - 5,692.4)	Median (IQR): \$3,119.3 (2,099.3 - 4,829.9)	0.001	2019
Cheong	Ciprofloxacin- resistant Enterobacterales	Ciprofloxacin- susceptible Enterobacterales	87	154	Cost for medication Procedure or operation Laboratory examination Radiologic examination Others	Median (IQR): \$3,730.2 (2,524.4 - 5,937.7)	Median (IQR): \$3,119.3 (2,148.3 - 4,578.5)	0.005	2019
MacVane	ESBL-producing EK	Non-ESBL-producing EK	55	55	Bed cost Antibiotic treatment	Median (IQR): \$10,741 (6,846 - 15,819)	Median (IQR): \$7,083 (5,667 - 11,652)	0.02	2012
François	MDR E. coli*	Wild (susceptible) E. coli*	98,504	222,933	Physician visits Diagnostic tests	€74.49 (30.87 - 118.11)	€74.76 (57.61 - 91.91)	0.99	2013
François	SDR E. coli*	Wild (susceptible) E. coli*	197,009	222,933	Prescription drugs Hospitalizations Loss of productivity due to absenteeism	€67.44 (43.93 - 90.95)	€74.76 (57.61 - 91.9)	0.63	2013
Esteve- Palau	ESBL-producing E. coli**	Non-ESBL-producing E. coli	60	60	Hospitalisation cost - Pharmacy - Antibiotic treatment - Laboratory - Inter consultations OPAT	Median (IQR): €4,980 (2,783 - 8,465)	Median (IQR): €2,612 (1,810 - 4,318)	<0.001	2013
icz	ESBL-producing K. pneumoniae**	Non-ESBL-producing K. pneumoniae	61	112	Hospitalisation cost - Pharmacy - Antibiotic treatment - Nursery - Laboratory - Radiology - Inter consultations Emergency room visits	Median (IQR): €6,718 (3,322 - 9,611)	Median (IQR): €3,688 (1,783 - 4,141), p < 0.001		2015

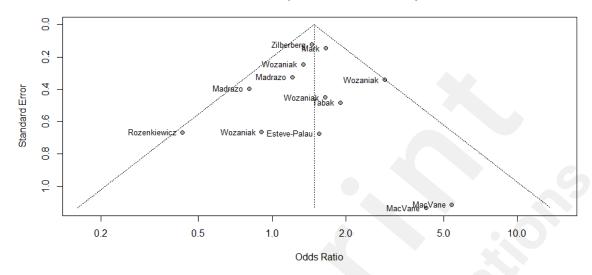
*Estimated at national level in France: The number of visits to general practices for suspected UTIs was estimated to be 823,073 among over the age of 18 years in 2012 (95 % CI: 623,614–1,040,532). Among these clinical UTIs, 626,046 (95 % CI: 465,196–786,896) were confirmed by positive urine cultures, and 518,446 (95 % CI: 381,981–654,911) of these UTIs were due to E. coli. Among the E. coli-positive urine cultures, 38 % (95 % CI: 31–45 %) were resistant to at least one antibiotic (SDR, n = 197,009), and 19 % (15–24 %) were multi-resistant (MDR, n = 98,504). The number of wild type (susceptible) E. coli was estimated to be 222,932.

Abbreviations: ESBL: Extended Spectrum Beta-Lactamase; IBL: Inducible Beta-Lactamases; GNB: Gram-negative bacteria; EK: Escherichia coli and Klebsiella species; E. coli: Escherichia coli; K. pneumoniae: Klebsiella pneumoniae; MDR: multi-drug resistant; SDR: single-drug resistant; OPAT: outpatient parenteral antimicrobial therapy

Table S5 Quality assessment results

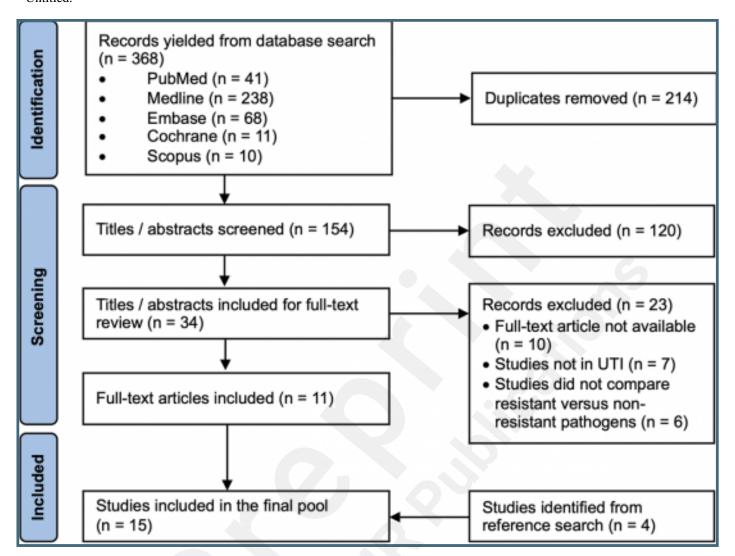
The criteria for controlled before / after (CBA) study, controlled interrupted time-series (ITS) study, non-controlled ITS / BA study, and qualitative study are not presented as no such study design was identified in this review.

		Methodology														Overall									
		All RCT & CRCT					Col	ort	Stuc	lies	All studies (quantitative and qualitative)								Overali						
Study details	Study type																					Final	Minimum	Minimum	Related to
		1	2	3	4	5	6	18	18	19	20	25	26	27	28	29	30	31	32	33	34		criteria	score	aims of
																						score	met?	met?	review?
Madrazo	Cohort	2						2	2	2	2	2		2	2	2	2	2	2	2	2	28	Yes	Yes	Yes
Mark	Cohort	2						2	2	2	2	2		2	2	2	2	2	2	2	2	28	Yes	Yes	Yes
Sozen	Cohort	2						2	2	2	2	2		2	2	1	0	0	0	2	1	20	Yes	Yes	Yes
Tabak	Cohort/case control	2						2	2	2	2	2		2	2	2	2	2	2	1	1	26	Yes	Yes	Yes
Wozniak	Cohort/case control	2						2	2	2	2	2		2	2	1	2	2	2	2	2	27	Yes	Yes	Yes
Chang	Cohort/case control	2						2	2	2	2	2		2	2	1	2	0	2	1	1	23	No	Yes	Yes
Cheong	Cohort/case control	2						2	2	2	2	2		2	2	2	2	0	2	0	2	24	Yes	Yes	Yes
François	Cohort	2						1	1	2	2	2		2	2	0	2	2	2	1	2	23	No	Yes	Yes
Kim	Cohort/case control	2						2	2	2	2	1		2	2	2	2	0	2	1	1	23	Yes	Yes	Yes
Little	RCT	2	2	2	1	2	2					0	2	2	2	2	2	2	2	1	1	27	Yes	Yes	Yes
Cardwell	Cohort	2						2	2	2	2	2		2	2	2	2	2	2	2	1	27	Yes	Yes	Yes
Esteve-Palau	Cohort/case control	2						2	2	2	2	2		2	2	1	2	2	2	2	2	27	No	Yes	Yes
MacVane	Cohort/case control	2						2	2	2	2	2		2	2	1	2	2	2	2	2	27	No	Yes	Yes
Rozenkiewicz	Cohort	2						2	2	2	2	2		2	2	1	2	1	2	2	2	26	No	Yes	Yes
Zilberberg	Cohort	2						2	2	2	2	2		2	2	1	2	2	2	2	2	27	No	Yes	Yes
		(Cri	teria	ID)	Sco	ring	syste	em: `	Yes :	= 2 p	oint	s; U	ncle	ar =	1 po	int;	No =	0 p	oint	s					


Criteria

- 1. Clearly stated aims?
- 2. Sequence generation
- 3. Allocation concealment
- 4. Blinding
- 5. Follow-up of professionals
- 6. Follow-up of patients or episodes of care
- 18. Comparability of groups (2E)
 Comparability of outcomes (3G)
- 19. Sufficient follow-up period
- 20. Protection against information bias (5B)
- 21. Appropriate qualitative methodology?
- 22. Appropriate Study Design?
- 23. Sampling and Recruitment appropriate?
- 24. Data collection appropriate?
- 25. Blinded assessment of primary outcome measures? (protection against detection bias) (3E)
- 26. Intervention unlikely to affect data collection?
- 27. Reliable primary outcome measures? (3F)
- 28. Free of selective outcome reporting(7A)
- 29. Incomplete outcome data addressed? (4C)
- 30. Analysis sufficiently rigorous/ free of bias?
- 31. Limitations addressed?
- 32. Conclusions clear & justified?
- 33. Free of other risk of bias? Threats to internal/external validity? Researcher bias/reflexivity?
- 34. Ethical issues addressed?

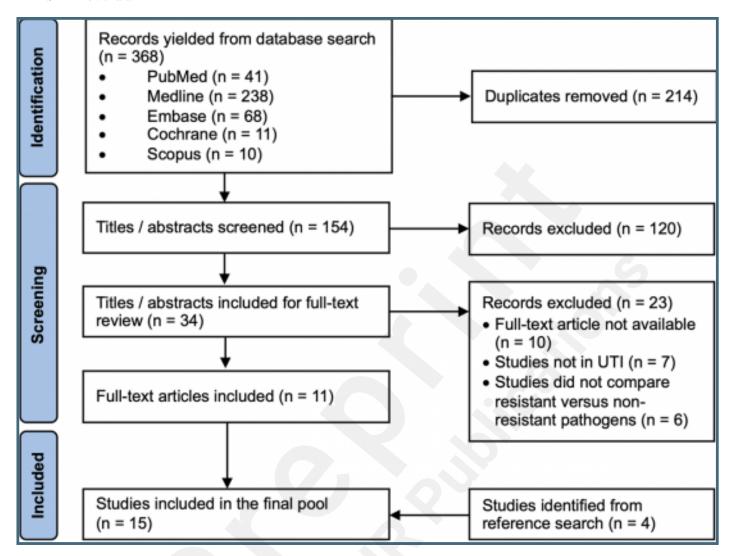
Figure S1: Funnel plot for publication bias in mortality


Eggar's test: p-value = 0.9699

Funnel Plot (Resistant Vs Sensitive)

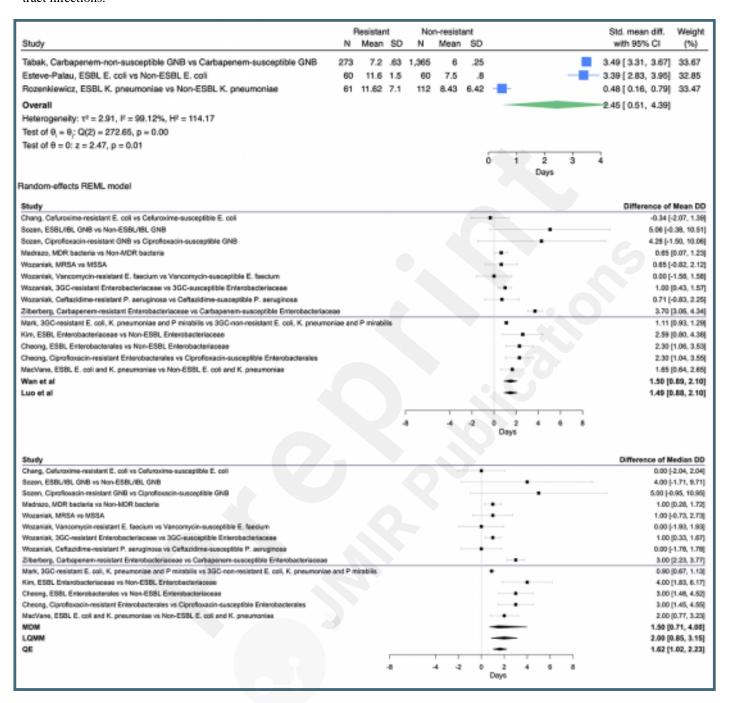
Supplementary Files

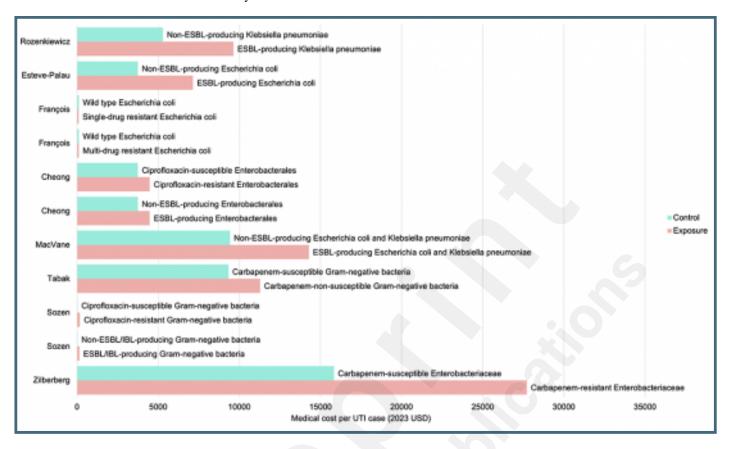
Untitled.



Figures

Funnel plot for publication bias in mortality.


PRISMA flowchart.


Pooled mortality of urinary tract infections by types of mortality outcomes.

		sistant		resistant		Odds ra		Weight
Study	Death	Survival	Death	Survival		with 951	r CI	640
30-day all-cause mortality								
Madrazo, MDR bacteria ve Non-MDR resistant bacteria	20	124	24	180	-	1.21 [0.64,	2.28]	5.55
Esteve-Palau, ESBL E. coli vs Non-ESBL E. coli	6	54	4	56		1.56 [0.42,	5.82]	1.29
Rozenkiewicz, ESBL K. pneumoniae vs Non-ESBL K. pneumoniae	3	58	12	100 -	-	0.43 [0.12,	1.50]	1.32
Heterogeneity: $\tau^c = 0.00$, $F = 0.00\%$, $HF = 1.00$					*	1.07 [0.63,	1.80]	
Test of 6, = 6; Q(2) = 2.31, p = 0.31								
Test of 9 = 0; z = 0.24, p = 0.81								
90-day all-cause mortality								
Mark, SSC-resistant E. coli, K. pneumoniae and P mirabilis vs SSC-non-resistant E. coli, K. pneumoniae and P mirabilis	65	465	279	3,298		1.65 [1.24,	2.20]	27.27
Heterogeneity: t* = 0.00, F = .%, HF = .						1.65 [1.24,	2.20]	
Test of $\theta_i = \theta_i$; $O(0) = -0.00$, $p = .$								
Test of 9 = 0: z = 3.49, p = 0.00								
In-hospital all-cause mortality								
Chang, Ceturoxime-resistant E. coli vs Ceturoxime-susceptible E. coli	0	22	0	306		13.62 [0.26,	702.70]	0.14
Tabak, Carbapenem-non-susceptible GNB vs Carbapenem-susceptible GNB	6	267	16	1,349	-	1.89 [0.73,	4.89]	2.50
Madrazo, MDR becteria vs Non-MDR resistant bacteria	11	133	19	185	-	0.81 [0.37,	1.75]	3.73
Wozaniak, MRSA vs MSSA	7	73	23	395	-	1.65 [0.68,	3.90]	2.88
Wozaniak, Vancomycin-resistant E. faecium vs Vancomycin-susceptible E. faecium	4	70	6	95		0.90 [0.25,	9.99]	1.32
Wozaniak, 3GC-resistant Enterobacteriaceae vs 3GC-susceptible Enterobacteriaceae	18	408	441	13,380		1.34 [0.83,	2.17]	9.68
Wozaniak, Ceflazidime-resistant P. aeruginosa vs Ceflazidime-susceptible P. aeruginosa	11	84	75	1,647		2.88 [1.47,	5.62)	5.00
Zilberberg, Carbapenem-resistant Enterobacteriaceae vs Carbapenem-ausceptible Enterobacteriaceae	76	553	1,873	19,251		1.45 [1.14,	1.05]	38.39
MacVane, ESBL E. coil and K. pneumoniae vs Non-ESBL E. coil and K. pneumoniae	5	50	. 1	54		5.40 [0.61,	47.83	0.47
Heterogeneity: T ^o = 0.00; P = 0.00%, HP = 1.00						1.49 [1.24,	1.80]	
Test of 8, = 8; Q(8) = 9.77, p = 0.28								
Test of 8 = 0: z = 4.19, p = 0.00								
In-hospital infection-related mortality								
MacVane, ESBL E. coll and K. pneumonise vs Non-ESBL E. coll and K. pneumonise	4	51	1	54		4.24 [0.46,	39.17]	0.45
Heterogeneity: $\tau^{c} = 0.00$, $F = .\%$, $H^{c} = .$						4.24 [0.46,	39.17]	
Test of 0, = 0; Q(0) = -0.00, p = .								
Test of $\theta = 0$: $z = 1.27$, $p = 0.20$								
Overall						1.50 [1.29,	1,740	
Heterogeneity: r² = 0.00, P = 0.00%, H² = 1.00								
Test of 6, = 6; Q(13) = 14.99, p = 0.31								
Test of 0 = 0: z = 5.30, p = 0.00				Favors ree	sistant Favors non-resistant			
Test of group differences: Q _p (3) = 2.91, p = 0.41						-		
				1.0	8 2 32 5	12		
Random-effects REML model								

(a) Pooled mean difference in length of stay of urinary tract infections, (b) Pooled median difference in length of stay of urinary tract infections.

Medical cost of antibiotic-resistant urinary tract infections.

Multimedia Appendixes

 $Supplementary\ material. \\ URL:\ http://asset.jmir.pub/assets/594cc534c6f9d04e2ee40e6dae8fe0c8.docx$

CONSORT (or other) checklists

PRISMA checklist.

URL: http://asset.jmir.pub/assets/dbed4df5a5f61707395b569efc1fdb3b.pdf