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Abstract

Background: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been
associated with and observed prior to the clinical identification of infection.

Objective: We performed an evaluation of HRV collected by a wearable device to identify and predict Coronavirus disease 2019
(COVID-19) and its related symptoms.

Methods: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study
using the custom Warrior Watch Study App which was downloaded to their smartphones. Participants wore an Apple Watch for
the duration of the study measuring HRV throughout the follow up period. Survey’s assessing infection and symptom related
questions were obtained daily.

Results: Using a mixed-effect COSINOR model the mean amplitude of the circadian pattern of the standard deviation of the
interbeat interval of normal sinus beats (SDNN), a HRV metric, differed between subjects with and without COVID-19
(P=0.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days
after a COVID-19 diagnosis compared to this metric during uninfected time periods (P =0.01). Significant changes in the mean
MESOR and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19
related symptom compared to all other symptom free days (P =0.01).
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Conclusions: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can
identify the diagnosis of COVID-19 and COVID-19 related symptoms. Prior to the diagnosis of COVID-19 by nasal PCR,
significant changes in HRV were observed demonstrating its predictive ability to identify COVID-19 infection.
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Abstract

Background: Changes in autonomic nervous system function, characterized by heart rate

variability (HRV), have been associated with and observed prior to the clinical identification

of infection. 

Objective: We performed an evaluation of HRV collected by a wearable device to identify

and predict Coronavirus disease 2019 (COVID-19) and its related symptoms.
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Methods:  Health  care  workers  in  the  Mount  Sinai  Health  System  were  prospectively

followed in an ongoing observational  study using the custom Warrior Watch Study App

which was downloaded to their smartphones. Participants wore an Apple Watch for the

duration of the study measuring HRV throughout the follow up period. Survey’s assessing

infection and symptom related questions were obtained daily. 

Results: Using a mixed-effect COSINOR model the mean amplitude of the circadian pattern

of the  standard deviation of the interbeat interval of normal sinus beats (SDNN), a HRV

metric,  differed  between  subjects  with  and  without  COVID-19  (P=0.006).  The  mean

amplitude of this circadian pattern differed between individuals during the 7 days before and

the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time

periods (P =0.01). Significant changes in the mean MESOR and amplitude of the circadian

pattern of the SDNN was observed between the first day of reporting a COVID-19 related

symptom compared to all other symptom free days (P =0.01). 

Conclusions:  Longitudinally  collected  HRV  metrics  from  a  commonly  worn  commercial

wearable device (Apple Watch)  can identify  the diagnosis  of  COVID-19 and COVID-19

related symptoms. Prior to the diagnosis of COVID-19 by nasal PCR, significant changes in

HRV were observed demonstrating its predictive ability to identify COVID-19 infection. 

Keywords: Wearable Device; COVID-19; Identification; Prediction; Heart  Rate Variability;

Physiological

Introduction

Coronavirus disease 2019 (COVID-19) has resulted in over 41 million infections and more

than 1.1 million deaths.1 A prolonged incubation period and variable symptomatology has

facilitated disease spread, with approximately 30-45% of individuals having asymptomatic

SARS-CoV-2 infections,  and testing  generally  limited  to  only  symptomatic  individuals.2-4

Health care workers (HCWs), characterized as any type of worker in a health care system,

represent a vulnerable population with a threefold increased risk of infection compared to

the  general  population.5 This  increased  risk  of  transmission  is  important  in  healthcare

settings, where asymptomatic or pre-symptomatic HCWs can shed the virus contributing to

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]
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transmission within healthcare facilities and their households.6 

Digital health technology offers an opportunity to address the limitations of traditional public

health strategies aimed at curbing COVID-19 spread.7 Smart phone Apps are effective in

using  symptoms to  identify  those possibly  infected with  SARS-CoV-2,  but  they rely  on

ongoing  participant  compliance  and  self-reported  symptoms.8 Wearable  devices  are

commonly  used  for  remote  sensing  and  provide  a  means  to  objectively  quantify

physiological parameters including heart rate, sleep, activity and measures of autonomic

nervous  system  (ANS)  function  (e.g.,  heart  rate  variability  [HRV]).9 The  addition  of

physiological data from wearable devices to symptom tracking Apps has been shown to

increase the ability to identify those infected with SARS-CoV-2.10 

HRV  is  a  physiological  metric  providing  insight  into  the  interplay  between  the

parasympathetic and sympathetic nervous system which modulate cardiac contractility and

cause variability in the beat-to-beat intervals.11 It exhibits a 24 hour circadian pattern with

relative sympathetic tone during the day and parasympathetic activity at night.12-14 Changes

in this circadian pattern can be leveraged to identify different physiological states. Several

studies have demonstrated that lower HRV, indicating increased sympathetic balance, is a

reliable predictor of infection onset.15, 16 However, HRV and its dynamic changes over time

have not been evaluated as a marker or predictor of COVID-19. In response to the COVID-

19 pandemic we launched The Warrior Watch Study™, employing a novel smartphone App

to remotely enroll and monitor HCWs throughout the Mount Sinai Health System in New

York City, a site of initial case surge. This digital platform enables remote survey delivery to

Apple iPhones and passive collection of Apple Watch data, including HRV. The aim of this

study is to determine if SARS-CoV-2 infections can be identified and predicted prior to a

positive test result using the longitudinal changes in HRV metrics derived from the Apple

Watch.

Methods

Study Design

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]
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The primary aim of the study was to determine whether changes in HRV can differentiate

participants infected or not infected with  SARS-CoV-2. The secondary aim was to see if

changes in HRV can predict the development of a SARS-CoV-2 infection prior to diagnosis

by a SARS-CoV-2 nasal PCR. Exploratory aims were (1) to determine whether changes in

HRV can identify the presence of COVID-19 related symptoms; (2) to determine whether

changes in HRV can predict the development of COVID-19 related symptoms; and (3) to

evaluate how HRV changed throughout the infection and symptom period. 

HCWs  in  the  Mount  Sinai  Health  System  were  enrolled  in  an  ongoing  prospective

observational cohort study. Eligible participants were ≥18 years of age, current employees

in the Mount Sinai Health System, had an iPhone Series 6 or higher, and had or were

willing to wear an Apple Watch Series 4 or higher. Participants were excluded if they had an

underlying  autoimmune  disease  or  were  on  medications  known  to  interfere  with  ANS

function. A positive COVID-19 diagnosis was defined as a positive SARS-CoV-2 nasal PCR

swab reported by the participant.   Daily symptoms were collected including fevers/chills,

tired/weak, body aches, dry cough, sneezing, runny nose, diarrhea, sore throat, headache,

shortness of  breath,  loss  of  smell  or  taste,  itchy  eyes,  none,  or  other.  This  study was

approved by the Institutional Review Board at The Icahn School of Medicine at Mount Sinai.

Study Procedures

Participants  downloaded  the  custom  Warrior  Watch  App  to  complete  eligibility

questionnaires and sign an electronic consent form. Participants completed an App-based

baseline assessment collecting demographic information, prior COVID-19 diagnosis history,

occupation,  and medical  history and were then followed prospectively through the App.

Daily  survey  questionnaires  captured  COVID-19  related  symptoms,  symptom  severity,

SARS-CoV-2 nasal PCR results, serum SARS-CoV-2 antibody test results, and daily patient

care  related  exposure  (Supplementary  Table  1).  Participants  carried  out  their  normal

activities throughout the study and were instructed to wear the Apple Watch for a minimum

duration of 8 hours per day. 

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]
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Wearable  Monitoring  Device  and  Autonomic  Nervous  System
Assessment

HRV was measured via the Apple Watch Series 4 or 5, which are commercially available

wearable devices. Participants wore the device on the wrist and connected it via Bluetooth

to  their  iPhone.  The Watch  is  equipped with  an  enhanced photoplethysmogram (PPG)

optical  heart  sensor  that  combines  a  green  LED  light  paired  with  a  light  sensitive

photodiode generating time series peaks that correlate with the magnitude of change in the

green light generated from each heartbeat.17 Data are filtered for ectopic beats and artifact.

The time difference between heartbeats is classified as the Interbeat Interval  (IBI)  from

which  HRV  is  calculated.  The  Apple  Watch  and  the  Apple  Health  app  automatically

calculate  HRV using  the  standard  deviation  of  the  IBI  of  normal  sinus  beats  (SDNN),

measured  in  milliseconds  (ms).  This  time  domain  index  reflects  both  sympathetic  and

parasympathetic nervous system activity and is calculated by the Apple Watch during ultra-

short-term recording periods of approximately 60 seconds.11 The Apple Watch generates

several  HRV measurements throughout  a  24-hour  period.  HRV metrics are stored in  a

locally encrypted database accessible through the iPhone Health app which is retrieved

through our custom Warrior Watch App. Data is transferred from the iPhone and Apple

Watch upon completion of  the e-consent  and any survey in  the App.  Wearable data is

stored  locally  allowing  retrieval  during  the  days  when  surveys  are  not  completed  by

participants. 

Statistical Analysis

Heart Rate Variability Modelling

The HRV data collected through the Apple Watch was characterized by a circadian pattern,

a  sparse  sampling  over  a  24-hour  period,  and  a  non-uniform timing  across  days  and

participants. These characteristics bias easily derived features including mean, maximum

and minimum creating the need to derive methods that model the circadian rhythm of HRV.

A COSINOR model was used to model daily  circadian rhythm over a 24 hour period with

the non-linear function Y(t) = M + Acos¿ t/ τ  + ϕ ) + ei(t) [equation 1], where τ is the period ( τ

 =24h), M is the Midline Statistic of Rhythm (MESOR), a rhythm-adjusted mean, A is the

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]
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amplitude, a measure of half the extent of variation within a day and Φ is the Acrophase, a

measure of the time of overall high values recurring in each day (Supplementary Figure

1). This non-linear model with 3 parameters has the advantage of being easily transformed

into  a  linear  model  by  recoding  time  (t)  into  two  new  variables  x  and  z  as

x=sin (2π t /τ ) , z=sin ¿ t/ τ ). HRV can then be written as Y(t)=M +β x t+γ z t  + ei(t) [equation 2],

where the linear coefficients  β , γ  of the linear model in equation 2 are related to the non-

linear parameters of the non-linear model in equation 1 by β=Acos¿ )   γ=−Asin¿ ). One can

estimate the linear parameters β , γ  and then obtain the A and ϕ  as: 

We took advantage of the longitudinal structure of the data to identify a participant specific

daily pattern and then measured departures from this pattern as a function of COVID-19

diagnosis or other relevant covariates. In order to do so we used a mixed-effect COSINOR

model,  where the HRV measure of participant i  at time t  can be written as HRV it  = (M

+β . x it+γ .z it  )  +  W it .θ i +  ei(t),  ei(t)~N(0,s),  and  where  M,  β  and γ  are  the  population

parameters (fixed-effects) and  θ i is a vector of random effects and assumed to follow a

multivariate normal distribution θ  i~N(0, Σ ). In this context the introduction of random effects

intrinsically model the correlation due to the longitudinal sampling. To measure the impact

of any covariate C on the participants’ daily curve, we can introduce such covariates as

fixed-effects as its interactions with x and z: HRV it  = M+ a oCi +¿ 2 C i ¿ .x it  + ¿  3 C i .¿z it  +W it . θi  +

ei(t) [equation 3]. Model parameters and the standard errors of equation 3 can be estimated

via maximum likelihood or reweighted least squares (REWL) and hypothesis testing can be

carried  out  for  any  comparison  that  can  be  written  as  a  linear  function  of  a' s , β∧γ

parameters. 

However, to test if the COSINOR curve, defined by the non-linear parameters M, A and ϕ  in

equation 1 differs between the populations defined by the covariate C, we proposed the

following bootstrapping procedure where for each resampling iteration we: (1) Fit a linear

mixed-effect model using REWL; (2) Estimated the marginal means obtaining the linear

parameters for each group defined by covariate C; (3) Used the inverse relationship to

estimate marginal means M, A and  ϕ  for each group defined by C; and (4) Defined the

bootstrapping statistics as the pairwise differences of M, A and ϕ   between groups defined

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

by C. For such iterations, the confidence intervals for the non-linear parameter was defined

using standard bootstrap techniques, as well deriving the p-values for the differences of

each non-linear parameter between groups defined by Ci. Age and sex were included as a

covariate in HRV analyses and admitted invariant and time-variant covariates.

Association and Prediction of COVID-19 Diagnosis and Symptoms

The  relationship  between  a  COVID-19  diagnosis  and  change  in  HRV  curves  were

evaluated. To test this association, we defined the time variant covariate C it for participant i

at time t as: 

Cit={1 t∈[ t o , t o+14]

0 otheriwise } .  

HRV metrics for the 14 days following the time of first positive SARS-CoV-2 nasal PCR test

were used to define the positive SARS-CoV-2 infection window. To evaluate the predictive

ability of changes in HRV prior to a COVID-19 diagnosis and to explore its changes during

the infection period,  the time variant covariate was used to characterize the following 4

groups: healthy uninfected individuals [t<t0-7], 7 days before COVID-19 diagnosis [t ≥ t0-7,

t<t0], the first 7 days post COVID-19 diagnosis [t0 ≤ t<t0+7] and the 7-14 days post diagnosis

[t0+7 ≤ t<t0+14]. 

To determine the association between COVID-19 symptoms and changes in HRV metrics,

we defined being symptomatic as the 1st day of a reported symptom and compared this to

all other days. To evaluate the predictive ability of HRV to identify upcoming symptom days

and to explore its changes over time the time variant covariate was used to characterize the

following 4 groups: healthy asymptomatic individuals for t<t0-1, one day before COVID-19

symptoms [t ≥ t0-1, t<t0], the first day of COVID-19 symptoms [t0 ≤ t<t0+1] and one day post

COVID-19 symptom development [t0+1 ≤ t<t0+2].

Results

Two  hundred  and  ninety-seven  participants  were  enrolled  between  April  29 th and

September 29th, 2020, when data was censored for analysis (Table 1). The median age at

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]
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enrollment  was  36  years  with  69%  of  participants  being  women.  Twenty  participants

reported  having  a  positive  SARS-CoV-2  nasal  PCR  test  prior  to  enrollment,  while  28

participants reported having a positive blood antibody test prior to joining the study. The

median  duration  of  follow  up  was  42  days  (range  0-152  days).  A median  of  28  HRV

samples (range 1-129) were obtained per participant. Study compliance over the follow up

period, defined as participants answering over 50% of daily surveys, was 70.4%.  

Identification and Prediction of COVID-19 Diagnosis

Participants classified as being without a COVID-19 diagnosis during follow up included

those with and without a diagnosis of COVID-19 prior to study enrollment. There was no

significant difference in the mean MESOR, acrophase and amplitude of the circadian SDNN

pattern of those with a positive nasal PCR prior to enrollment compared to those who were

never diagnosed with COVID-19. This supports the inclusion of participants with a prior

COVID-19  diagnosis  in  our  analysis  (Supplementary  Table  2).   Thirteen  participants

reported a positive SARS-CoV-2 nasal PCR during the follow up period, with the date of

diagnosis  corresponding  with  the  reported  date  of  the  positive  nasal  PCR.  The  mean

MESOR, acrophase and amplitude of the circadian SDNN pattern in participants diagnosed

with  and  without  COVID-19  during  follow  up  are  described  in  Table  2.  A significant

difference in the circadian pattern of SDNN was observed in participants diagnosed with

COVID-19  compared  to  those  without  COVID-19.  There  was  a  significant  difference

(P=0.006) between the mean amplitude of SDNNs circadian pattern in those with (1.23 ms,

95% CI -1.94- 3.11) and without COVID-19 (5.30 ms, 95% CI 4.97-5.65). No difference was

observed  between  the  MESOR (P=0.46)  or  acrophase  (P=0.80)  in  these  two  infection

states (Figure 1a-c). Similar findings were observed when this analysis was repeated to

include only participants who had either a positive (n=13) or negative (n=108) SARS-CoV-2

nasal PCR during the follow up period, excluding participants who reported never being

tested (Supplementary Table 3)

The mean MESOR, acrophase and amplitude of  the circadian SDNN pattern for  those

without COVID-19, those during the 7 days prior to a COVID-19 diagnosis,  participants

during the 7 days after  a  COVID-19 diagnosis  and those during the 7-14 days after  a

COVID-19 diagnosis are described in Table 3. Significant changes in the circadian pattern

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

of SDNN were observed in participants during the 7 days prior and the 7 days after a

diagnosis of COVID-19 when compared to uninfected participants. There was a significant

difference  between  the  amplitude  of  the  SDNN  circadian  rhythm  between  uninfected

participants (5.31 ms, 95% CI 4.95-5.67) compared to individuals during the 7 day period

prior  to  a  COVID-19  diagnosis  (0.29  ms,  95% CI  -4.68-1.73;  P=0.01)  and  participants

during the 7 days after a COVID-19 diagnosis (1.22 ms, 95% CI -2.60-3.25; P=0.01). There

were no other significant differences between the MESOR, amplitude, and acrophase of

SDNNs circadian rhythm observed between healthy individuals, individuals 7 days before a

COVID-19 diagnosis, individuals 7 days after a COVID-19 diagnosis, and individuals 7-14

days after infection (Figure 1d-e).

Six of the 13 subjects diagnosed with COVID-19 during follow up reported symptoms at

some point during the study period. Only 4 subjects had a symptomatic COVID-19 infection,

reporting symptoms between 7 days prior and 14 days after a positive SARS-CoV-2 nasal

PCR.  Comparing  participants  with  and  without  symptomatic  COVID-19  no  significant

differences between the  MESOR (28.58 ms,  95% CI  18.61-  38.56;  37.71 ms,  95% CI

30.65- 44.98, p=0.11), amplitude (1.15 ms, 95% CI -2.63- 3.21; 1.68 ms, 95% CI -1.13-

3.95, p=0.76) and acrophase (-1.92 ms, 95% CI -3.68- -0.02; -2.49 ms, 95% CI -4.37- -

0,33, p=0.62) of SDNNs circadian rhythm were observed, respectively. 

Identification and Prediction of COVID-19 Symptoms

One hundred and sixty-five participants reported developing a symptom during the follow up

period,  with  the  greatest  number  of  participants  reporting  feeling  tired  or  weak (n=87),

followed by headaches (n= 82) and sore throat (n=60) (Table 4). Evaluating the days when

participants experienced symptoms, we found that loss of smell or taste were reported the

most with a mean of 138 days. This was followed by feeling tired or weak, reported a mean

of 25 days and runny nose, reported a mean of 19.5 days (Figure 2). The mean MESOR,

acrophase and amplitude observed in the circadian SDNN pattern in participants on the first

day a symptom and on all other days of follow up are reported in  Table 5.  There was a

significant difference in the circadian SDNN pattern between participants on the first day a

symptom was reported compared to all other days of follow up. Specifically, there was a

significant difference (P=0.01) between the mean MESOR of SDNNs circadian pattern on
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the first  day of  symptoms (46.01 ms,  95% CI 43.37-48.77)  compared to all  other  days

(43.48  ms,  95% CI  41.77-45.27).  Similarly,  there  was  a  significant  difference  (P=0.01)

between the mean amplitude of SDNNs circadian pattern on the first day of symptoms (2.58

ms, 95% CI 0.26-5.00) compared to all other days (5.30 ms, 95% CI 4.95-5.66) (Figure 3a-

c).  Out  of  the  165  participants  reporting  symptoms  during  the  follow  up  period,  36

participants reported experiencing a symptom graded as 6 or higher on a ten-point scale.

The impact of symptom of severity on HRV was evaluated by comparing HRV metrics in

participants with symptoms graded as a six or higher versus those with symptoms of five or

less. There was a significant difference between the mean amplitude (P=0.02) and MESOR

(P=0.01) of SDNNs circadian pattern in subjects with low (amplitude: 9.39 ms, 95% CI 7.41-

11.02; MESOR: 42.82 ms, 95% CI 38.65-47.19) and high (amplitude: 4.74 ms, 95% CI

0.75-8.40;  MESOR:  36.15  ms,  95%  CI  29.11-43.34)  symptom  severity.  There  was  no

significant difference (P=0.84) in the acrophase between those with low (-2.43 ms, 95% CI -

2.59- -2.26)  and high (-2.49 ms, 95% CI -3.19- -1.77) symptom severity.   

The mean MESOR, acrophase and amplitude observed in the circadian SDNN pattern in

participants on the day before symptoms develop, on the first day of the symptom, on the

day following the first day of the symptom and on all other days are reported in  Table 6.

Significant changes in the circadian pattern of SDNN were observed, specifically in the

mean amplitude (P=0.04) when comparing participants on the first  day of the symptom

(3.07 ms, 95% CI 0.88-5.22) to all other days (5.32 ms, 95% CI 4.99-5.66). Excluded from

this analysis was the day prior and day after the first symptomatic day. Changes in SDNN

characteristics  trended  toward  significance  prior  to  the  development  of  symptoms.

Specifically,  the differences in  the mean amplitude of  SDNNs circadian pattern trended

toward significance when comparing the day prior to symptom development (2.92 ms, 95%

CI 0.50-5.33) with all other days (5.32, 95% CI 4.99-5.66; P=0.056). Again, excluded from

the analysis was the first day of the symptom and the day after the first symptomatic day.

Additionally,  there  was  trend  toward  significance  when  comparing  the  amplitude of  the

SDNN circadian pattern between participants during the first day of the symptom (3.07 ms,

95% CI 0.88-5.22) with the one day after the first symptom was reported (5.47 ms, 95% CI

3.16-7.76; P=0.56). Excluded from the analysis was the day prior to symptom development

and  all  other  days.  There  were  no  other  significant  differences  between  the  MESOR,

amplitude, and acrophase of SDNNs circadian rhythm when comparing participants on the
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day before symptoms develop, on the first day of the symptom, on the day following the first

day of the symptom and on all other days (Figure 3d-e).

Table 1. Baseline demographics of participants at enrollment. 
Cohort (n=297)

Age, mean (SD) 36.3 (9.8)
Body Mass Index, mean (SD) 25.6 (5.7)
Female Gender (%) 204 (69.4)
Race (%)

Asian 73 (24.6)
Black 29 (9.8)
Other 43 (14.5)
White 108 (36.4)

Ethnicity (%)
Hispanic 44 (14.8)

Baseline Positive SARS-CoV-2 nasal PCR (%) 20 (6.7)
Baseline Positive SARS-CoV-2 serum antibody (%) 28 (9.4)
Occupation* (%)

Clinical non-Trainee 198 (68.0)
Clinical Trainee 36 (12.4)
Non-clinical Staff 57 (19.6)

Baseline Smoking Status (%)
Current/Past smoker 35 (11.9)
Never/Rarely smoker 259 (88.1)

Baseline Immune Suppressing Medication (%) 4 (1.4)
PCR, polymerase chain reaction; SD, standard deviation
*Clinical trainee defined as a resident or fellow; clinical non-trainee defined as HCWs reporting at least one
patient facing day during follow up, exclusive of resident and fellows; non-clinical staff defined as a HCW who
did not report a patient facing day during follow up. 

Table 2. HRV parameters in participants with and without COVID-19 diagnosed based on
SARS-CoV-2 nasal PCR swabs. 

Parameter Parameter Mean, ms (95% CI)
COVID-19 Negative

Parameter Mean, ms (95% CI)
COVID-19 Positive

Difference
(95% CI)

P-
value

MESOR 43.57 (41.40-45.40) 42.46 (38.90-45.79) -1.12 (-4.22- 1.73) 0.46

Amplitude 5.30 (4.97-5.65) 1.23 (-1.94- 3.11) -4.07 (-7.29- -2.07) 0.006

Acrophase -2.44 (-2.49- -2.39) -2.23 (-2.22- -4.24) 0.22 (-1.74- 2.43) 0.80
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Table  3.  Comparison  of  HRV  parameters  based  on  the  time  period  before  and  after
diagnosis. 

Parameter Period Around
COVID-19
Diagnosis 

Mean, ms
(95% CI)

Period Around
COVID-19
Diagnosis

Mean, ms
(95% CI)

Difference 
(95% CI)

P-
valu

e
MESOR

7 Days Before 40.56
(35.98-45.46)

Uninfected 43.58
(41.88-45.37)

-3.03 
(-6.98-1.02)

0.13

7 Days After 40.77
(36.44-45.42)

Uninfected 43.58
(41.88-45.37)

-2.81 
(-6.73-1.10)

0.17

7-14 Days After 43.80
(40.01-47.65)

Uninfected 43.58
(41.88-45.37)

0.22 
(-3.39- 3.73)

0.89

7 Days Before 40.56
(35.98-45.46)

7-14 Days After 43.80
(40.01-47.65)

-3.24 
(-9.63-3.33)

0.32

7 Days After 40.77
(36.44-45.42)

7-14 Days After 43.80
(40.01-47.65)

-3.03 
(-6.98-1.02)

0.13

7 Days After 40.77
(36.44-45.42)

7 Days Before 40.56
(35.98-45.46)

0.217 
(-3.39-3.73)

0.89

Amplitude
7 Days Before 0.29 

(-4.68-1.73)
Uninfected 5.31 

(4.95-5.67)
-5.02 

(-10.14- -3.58)
0.01

7 Days After 1.22 
(-2.60-3.25)

Uninfected 5.31 
(4.95-5.67)

-4.09 
(-7.87- -1.93)

0.01

7-14 Days After 3.80 
(-0.64-7.88)

Uninfected 5.31 
(4.95-5.67)

-1.51 
(-5.79-2.35)

0.48

7 Days Before 0.29 
(-4.68-1.73)

7-14 Days After 3.80 
(-0.64-7.88)

-3.51
 (-10.50-0.22)

0.20

7 Days After 1.22 
(-2.60-3.25)

7-14 Days After 3.80 
(-0.64-7.88)

-2.58 
(-8.44-2.08)

0.34

7 Days After 1.22 
(-2.60-3.25)

7 Days Before 0.29 
(-4.68-1.73)

0.93 
(-1.92- 5.83)

0.58

Acrophas
e

7 Days Before -1.67 
(-3.78-1.19)

Uninfected -2.44 
(-2.49- -2.39)

0.78
 (-1.4- 3.62)

0.45

7 Days After -0.53 
(-2.39-5.89)

Uninfected -2.44 
(-2.49- -2.39)

1.92 
(0.03-8.13)

0.48

7-14 Days After -2.63 
(-3.95-1.19)

Uninfected -2.44 
(-2.49- -2.39)

-0.19 
(-1.39-1.16)

0.70

7 Days Before -1.67 
(-3.78-1.19)

7-14 Days After -2.63 
(-3.95-1.19)

0.96 
(-1.85-4.32)

0.55

7 Days After -0.53 
(-2.39-5.89)

7-14 Days After -2.63 
(-3.95-1.19)

2.10 
(0.10-8.29)

0.35

7 Days After -0.53 
(-2.39-5.89)

7 Days Before -1.67 
(-3.78-1.19)

1.14 
(-1.34- 7.27)

0.58
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Table 4. Number of participants reporting each symptom.
Symptom Number of Participants (%)*
Fever or chills 11 (3.7)
Tired or weak 87 (29.3)
Body aches 47 (15.8)
Dry cough 32 (10.8)
Sneezing 52 (17.5)
Runny nose 43 (14.4)
Diarrhea 33 (11.1)
Sore throat 60 (20.2)
Headache 82 (27.6)
Shortness of breath 11 (3.7)
Loss of smell or taste 5 (1.7)
Itchy eyes 53 (17.8)
Other 26 (8.8)

* Precents add to greater than 100% as participants can report one or more symptom

Table 5.  HRV parameters on the first  day of  reported symptoms compared to  all  other
symptom free days. 

Parameter Parameter Mean, ms (95%
CI) First Day of Symptoms

Parameter Mean, ms
(95% CI) All Other Days

Difference (95% CI) P-value

MESOR 46.01 (43.37-48.77) 43.48 (41.77-45.27) 2.53 (0.82-4.36) 0.01

Amplitude 2.58 (0.26-5.00) 5.30 (4.95-5.66) -2.73 (-5.16- 0.31) 0.01

Acrophase -2.21 (-2.83- -1.58) -2.44 (-2.49- -2.39) 0.24 (-0.38- 0.88) 0.44

Table 6.  Comparison of HRV parameters based on symptom state and the time-period
before and after the first day of reported symptoms.

Parameter Symptom State Mean, ms
(95% CI)

Symptom State Mean, ms
(95% CI)

Difference 
(95% CI)

P-
value
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MESOR
One day after 1st

symptom day
44.52

(42.05-46.94)
Asymptomatic 43.49

(41.74-45.21)
1.03 

(-0.64-2.67)
0.21

One day before
1st symptom day

43.84
(41.41-46.15)

Asymptomatic 43.49
(41.74-45.21)

0.34 
(-1.46-2.23)

0.73

1st day of
symptom

44.87
(42.42-47.18)

Asymptomatic 45.49
(41.74-45.21)

1.37 
(-0.24-3.04)

0.11

One day before
1st symptom day

43.84
(41.41-46.15)

One day after 1st

symptom day
44.52

(42.05-46.94)
-0.69 

(-3.72-2.47)
0.66

1st day of
symptom

44.87
(42.42-47.18)

One day after 1st

symptom day
44.52

(42.05-46.94)
0.34 

(-1.46-2.23)
0.73

1st day of
symptom

44.87
(42.42-47.18)

One day before 1st

symptom day
43.84

(41.41-46.15)
1.03 

(-0.64-2.67)
0.21

Amplitude
One day after 1st

symptom day
5.47 

(3.16-7.76)
Asymptomatic 5.32 

(4.99-5.66)
0.15 

(-2.21-2.37)
0.91

One day before
1st symptom day

2.92 
(0.50-5.33)

Asymptomatic 5.32 
(4.99-5.66)

-2.40
 (-4.75- -0.07)

0.056

1st day of
symptom

3.07 
(0.88-5.22)

Asymptomatic 5.32 
(4.99-5.66)

-2.25 
(-4.38- -0.27)

0.04

One day before
1st symptom day

2.92 
(0.50-5.33)

One day after 1st

symptom day
5.47 

(3.16-7.76)
-2.55

 (-6.64- 1.65)
0.25

1st day of
symptom

3.07 
(0.88-5.22)

One day after 1st

symptom day
5.47 

(3.16-7.76)
-2.40 

(-4.75- -0.06)
0.056

1st day of
symptom

3.07 
(0.88-5.22)

One day before 1st

symptom day
2.92 

(0.50-5.33)
0.15 

(-2.20- 2.37)
0.91

Acrophase
One day after 1st

symptom day
-2.30

(-2.60- -2.00)
Asymptomatic -2.45

(-2.50- -2.39)
0.14 

(-0.15- 0.44)
0.33

One day before
1st symptom day

-2.52
(-3.31- -1.71)

Asymptomatic -2.45
(-2.50- -2.39)

-0.08 
(-0.79-0.66)

0.86

1st day of
symptom

-2.26
(-2.73- - 1.79)

Asymptomatic -2.45
(-2.50- -2.39)

0.19
 (-0.24- 0.63)

0.36

One day before
1st symptom day

-2.52
(-3.31- -1.71)

One day after 1st

symptom day
-2.30

(-2.60- -2.00)
-0.22

 (-1.11-0.70)
0.63

1st day of
symptom

-2.26
(-2.73- - 1.79)

One day after 1st

symptom day
-2.30

(-2.60- -2.00)
0.04 

(-0.36-0.46)
0.86

1st day of
symptom

-2.26
(-2.73- - 1.79)

One day before 1st

symptom day
-2.52

(-3.31- -1.71)
0.26 

(-0.40-0.92)
0.41

Discussion

Principal Results and Comparison with Prior Work

In this prospective study, longitudinally evaluated HRV metrics were found to be associated

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

with a positive SARS-CoV-2 diagnosis and COVID-19 symptoms. Significant changes in

these metrics were observed 7 days prior to the diagnosis of COVID-19. To the best of our

knowledge this is the first study to demonstrate that physiological metrics derived from a

commonly  worn  wearable  device  (Apple  Watch)  can  identify  and  predict  SARS-CoV-2

infection prior to diagnosis with a SARS-CoV-2 nasal PCR swab.  These preliminary results

identify a novel easily measured physiological metric which may aid in the tracking and

identification of SARS-CoV-2 infections. 

Current  means to  control  COVID-19 spread rely  on  case isolation and contact  tracing,

which have played a major role in the successful containment of prior infectious disease

outbreaks.18-20 However, the variable incubation period, high percentage of asymptomatic

carriers,  and  infectivity  during  the  pre-symptomatic  period  of  COVID-19  have  made

containment  challenging.21 This  has  further  limited  the  utility  of  systematic  screening

technologies reliant on vital sign assessment or self-reporting of symptoms.7 Advances in

digital  health  provide  a  unique  opportunity  to  enhance  disease  containment.  Wearable

devices are  commonly  used and well  accepted for  health  monitoring.9,  22 Commercially

available devices are able to continually collect several physiological parameters. Unlike

App-based  platforms,  wearable  devices  have  the  advantage  of  not  requiring  users  to

actively participate aside from regular use of the device. Prior to the COVID-19 pandemic,

population level data from the Fitbit wearable device demonstrated effectiveness at real-

time  geographic  surveillance  of  influenza-like  illnesses  through  the  assessment  of

physiological  parameters.23 This  concept  was  recently  expanded  during  the  COVID-19

pandemic by Quer and colleagues who demonstrated that the combination of symptom-

based data with resting heart rate and sleep data from wearable devices was superior to

relying on symptom-based data alone to identify COVID-19 infections.10 

HRV  has  been  shown  to  be  altered  during  illnesses  with  several  small  studies

demonstrating  changes  in  HRV  associated  with  and  predictive  of  the  development  of

infection.24 Ahmad and colleagues followed 21 subjects undergoing bone marrow transplant

finding a significant reduction in root mean square successive difference metrics prior to the

clinical diagnosis of infection. Furthermore, wavelet HRV was noted to decrease by 25% on

average 35 hours prior to a diagnosis of sepsis in 14 patients.16 In another study in 100

infants,  significant  HRV  changes  were  noted  3-4  days  preceding  sepsis  or  systemic
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inflammatory response syndrome with the largest increase being seen 24 hours prior to

development.15 Building  on  these  observations  demonstrating  that  ANS  changes

accompany or precede infection, our team launched the Warrior Watch Study. 

We demonstrated  that  significant  changes  in  the  circadian  pattern  of  HRV,  specifically

SDNN’s amplitude, was associated with a positive COVID-19 diagnosis. Interestingly, when

we compared these changes over the seven days preceding the diagnosis of COVID-19 we

continued to see significant alterations in amplitude when compared to individuals without

COVID-19.  This  demonstrates  the  predictive  ability  of  this  metric  to  identify  infection.

Additionally, most participants diagnosed with COVID-19 in our cohort were asymptomatic.

We demonstrated that there was no difference in changes in HRV metrics between those

with and without symptomatic COVID-19 infections. These findings support  the utility  of

using  wearable  technology  to  identify  COVID-19  infections  even  in  asymptomatic

individuals.  When we follow individuals 7-14 days after diagnosis with COVID-19, we find

that the circadian HRV pattern starts to normalize and is no longer statistically different from

an uninfected pattern. As an exploratory analysis we evaluated how HRV was impacted by

symptoms associated  with  a  COVID-19 diagnosis,  since individuals  may not  be  tested

despite symptoms. We found significant changes in the amplitude of the circadian HRV

pattern on the first day of symptoms, with a trend toward statistical significance on the day

before and after symptoms are reported. Similarly, we found significant changes in HRV

when  we  stratified  subjects  based  on  severe  or  non-severe  symptom  severity.  Taken

together, these findings highlight the possible use of HRV collected via wearable devices to

identify and predict COVID-19 infections. 

Limitations

There are several limitations to our study. First, there was a small number of participants

who were diagnosed with COVID-19 in our  cohort  limiting our ability  to  determine how

predictive HRV can be of infection. However, these preliminary findings support the further

evaluation of HRV as a metric to identify and predict COVID-19 and warrant further study.

An additional limitation is the sporadic collection of HRV by the Apple Watch. While our

statistical modelling was able to account for this a denser dataset would allow for expanded

evaluation  of  the  relationship  between  this  metric  and  infections/symptoms.  The  Apple
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Watch also only provides HRV in  one time-domain (SDNN),  limiting assessment of  the

relationship between other HRV parameters with COVID-19 outcomes. Additionally, we did

not capture the time-of-day participants were awake or sleeping. Therefore, fluctuations in

sleep patterns may impact some HRV readings and were unable to be controlled in the

analysis. Lastly, an additional limitation is that we relied on self-reported data in this study,

precluding independent verification of COVID-19 diagnosis. 

Conclusions

In summary, we demonstrated a relationship between longitudinally collected HRV acquired

from a  commonly  used  wearable  device  and SARS-CoV-2  infection.  These preliminary

results support the further evaluation of HRV as a biomarker of SARS-CoV-2 infection by

remote sensing means. While further study is needed, this may allow for the identification of

SARS-CoV-2 infection during the pre-symptomatic  period,  in  asymptomatic  carriers and

prior  to  diagnosis  by  a  SARS-CoV-2  nasal  PCR  tests.  These  findings  warrant  further

evaluation of this approach to track and identify COVID-19 infections and possibly other

type of infections. 

Acknowledgements

Support  for  this study was provided by the  Ehrenkranz Lab For Human Resilience, the

BioMedical  Engineering  and  Imaging  Institute,  The  Hasso  Plattner  Institute  for  Digital

Health at Mount Sinai, The Mount Sinai Clinical Intelligence Center and The Dr. Henry D.

Janowitz Division of Gastroenterology. 

Conflicts of Interest

RPH discloses consulting  fees from HealthMode,Inc,  Janssen Pharmaceuticals,  Takeda

Pharmaceuticals.  Research  support  from  Intralytix  Inc.  and  a  Crohn’s  and  Colitis

Foundation Career Development Award (grant number 607934). 

MD declares no conflicts of interest. 

LT declares no conflicts of interest.

MZ declares no conflicts of interest.

EG declares no conflicts of interest.

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

SK declares no conflicts of interest.

DH declares no conflicts of interest.

AB declares no conflicts of interest.

RP declares no conflicts of interest.

AC declares no conflicts of interest. 

RM declares no conflicts of interest.

B.S.G. has received consulting fees from Data2Discovery, Sema4, and UCSF

ML declares no conflicts of interest. 

JA declares no conflicts of interest.

IN declares no conflicts of interest. 

DR declares no conflicts of interest

DC is co-inventor on patents filed by the Icahn School of Medicine at Mount Sinai (ISMMS)

relating  to  the  treatment  for  treatment-resistant  depression,  suicidal  ideation  and  other

disorders. ISMMS has entered into a licensing agreement with Janssen Pharmaceuticals,

Inc. and it has and will receive payments from Janssen under the license agreement related

to these patents for the treatment of treatment-resistant depression and suicidal ideation.

Consistent with the ISMMS Faculty Handbook (the medical school policy), Dr. Charney is

entitled  to  a  portion  of  the  payments  received  by  the  ISMMS.  Since  SPRAVATO  has

received regulatory approval for treatment-resistant depression, ISMMS and thus, through

the ISMMS, Dr.  Charney,  will  be entitled to  additional  payments,  beyond those already

received, under the license agreement.  Dr.  Charney is a named co-inventor on several

patents filed by ISMMS for a cognitive training intervention to treat depression and related

psychiatric  disorders.  The  ISMMS  has  entered  into  a  licensing  agreement  with  Click

Therapeutics, Inc. and has and will receive payments related to the use of this cognitive

training  intervention  for  the  treatment  of  psychiatric  disorders.  In  accordance  with  the

ISMMS Faculty Handbook, Dr. Charney has received a portion of these payments and is

entitled to a portion of any additional payments that the medical school might receive from

this  license  with  Click  Therapeutics.  Dr.  Charney  is  a  named  co-inventor  on  a  patent

application filed by the ISMMS for the use of intranasally administered Neuropeptide Y

(NPY) for the treatment of mood and anxiety disorders. This intellectual property has not

been licensed. Dr. Charney is a named co-inventor on a patent application in the US, and

several issued patents outside the US filed by the ISMMS related to the use of ketamine for

the treatment of post-traumatic stress disorder (PTSD). This intellectual property has not

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

been licensed.

E.P. Bottinger reports consultancy agreements with Deloitte and Roland Berger; ownership

interest in Digital Medicine E.Böttinger GmbH, EBCW GmbH, and Ontomics, Inc.; receiving

honoraria  from Bayer,  Bosch  Health  Campus,  Sanofi,  and  Siemens;  and  serving  as  a

scientific advisor or member of Bosch Health Campus and Seer Biosciences Inc

LK declares research funding from Abbvie and Pfizer,  consulting for  Abbvie and Pfizer,

equity ownership/stock options MetaMe Health, Trellus Health

MSF declares research support from Novartis and Allergenis.

G.N.  Nadkarni  reports  employment  with,  consultancy  agreements  with,  and  ownership

interest in Pensieve Health and Renalytix AI; receiving consulting fees from AstraZeneca,

BioVie,  GLG Consulting,  and  Reata;  and serving  as  a  scientific  advisor  or  member  of

Pensieve Health and Renalytix AI.

ZAF  discloses  consulting  fees  from  Alexion,  GlaxoSmithKline  and  Trained  Therapeutix

Discovery; Research funding from Daiichi Sankyo; Amgen; Bristol Myers Squibb; Siemens

Healthineers.  ZAF receives financial  compensation  as  a  board  member  and advisor  to

Trained Therapeutix Discovery and owns equity in Trained Therapeutix Discovery as co-

founder.

Abbreviations

ANS: Autonomic Nervous System 
COVID-19: Coronavirus Disease 2019
HCW: Health Care Worker
HRV: Heart Rate Variability
IBI: Interbeat Interval
MESOR: Midline Statistic of Rhythm
PCR: Polymerase Chain Reaction
PPG: Photoplethysmogram
REWL: Reweighted Least Squares
SD: Standard Deviation
SDNN: Standard Deviation of the Interbeat Interval of Normal Sinus Beats

References

1. Johns Hopkins University & Medicine: Coronavirus Resource Center. Accessed October 22,
2020, https://coronavirus.jhu.edu/
2. Huang  C,  Wang  Y,  Li  X,  et  al.  Clinical  features  of  patients  infected  with  2019  novel
coronavirus  in  Wuhan,  China.  Lancet.  02  2020;395(10223):497-506.  doi:10.1016/S0140-
6736(20)30183-5
3. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

COVID-19. Nat Med. 05 2020;26(5):672-675. doi:10.1038/s41591-020-0869-5
4. Oran  DP,  Topol  EJ.  Prevalence  of  Asymptomatic  SARS-CoV-2  Infection  :  A Narrative
Review. Ann Intern Med. 09 2020;173(5):362-367. doi:10.7326/M20-3012
5. Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-line health-care
workers  and  the  general  community:  a  prospective  cohort  study.  Lancet  Public  Health.  09
2020;5(9):e475-e483. doi:10.1016/S2468-2667(20)30164-X
6. Shah ASV, Wood R, Gribben C, et al. Risk of hospital admission with coronavirus disease
2019  in  healthcare  workers  and  their  households:  nationwide  linkage  cohort  study.  BMJ.  10
2020;371:m3582. doi:10.1136/bmj.m3582
7. Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in
COVID-19  pandemic  planning  and  response.  Lancet  Digit  Health.  Aug  2020;2(8):e435-e440.
doi:10.1016/S2589-7500(20)30142-4
8. Menni C, Valdes AM, Freidin MB, et al.  Real-time tracking of self-reported symptoms to
predict potential COVID-19. Nat Med. 07 2020;26(7):1037-1040. doi:10.1038/s41591-020-0916-2
9. Vogels  EA.  About  one-in-five  Americans  use  a  smart  watch  or  fitness  tracker.
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-
or-fitness-tracker/
10. Quer G, Radin JM, Gadaleta M, et al. Wearable sensor data and self-reported symptoms for
COVID-19 detection. Nat Med. Oct 2020;doi:10.1038/s41591-020-1123-x
11. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms.  Front
Public Health. 2017;5:258. doi:10.3389/fpubh.2017.00258
12. Boudreau P, Yeh WH, Dumont GA, Boivin DB. A circadian rhythm in heart rate variability
contributes  to  the  increased  cardiac  sympathovagal  response  to  awakening  in  the  morning.
Chronobiol Int. Jul 2012;29(6):757-68. doi:10.3109/07420528.2012.674592
13. Buijs RM, la Fleur SE, Wortel J, et al. The suprachiasmatic nucleus balances sympathetic and
parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol.
Sep 2003;464(1):36-48. doi:10.1002/cne.10765
14. Nonell A, Bodenseh S, Lederbogen F, et al. Chronic but not acute hydrocortisone treatment
shifts the response to an orthostatic challenge towards parasympathetic activity. Neuroendocrinology.
2005;81(1):63-8. doi:10.1159/000084894
15. Kovatchev BP, Farhy LS, Cao H, Griffin MP, Lake DE, Moorman JR. Sample asymmetry
analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory
response syndrome. Pediatr Res. Dec 2003;54(6):892-8. doi:10.1203/01.PDR.0000088074.97781.4F
16. Ahmad S, Ramsay T,  Huebsch L,  et  al.  Continuous multi-parameter heart  rate  variability
analysis  heralds  onset  of  sepsis  in  adults.  PLoS  One.  Aug  2009;4(8):e6642.
doi:10.1371/journal.pone.0006642
17. Monitor  your  heart  rate  with  Apple  Watch.  Accessed  October  22nd,  2020,
https://support.apple.com/en-us/HT204666
18. Glasser JW, Hupert N, McCauley MM, Hatchett R. Modeling and public health emergency
responses: lessons from SARS. Epidemics. Mar 2011;3(1):32-7. doi:10.1016/j.epidem.2011.01.001
19. Swanson KC, Altare  C,  Wesseh CS,  et  al.  Contact  tracing performance during the Ebola
epidemic  in  Liberia,  2014-2015.  PLoS  Negl  Trop  Dis.  09  2018;12(9):e0006762.
doi:10.1371/journal.pntd.0006762
20. Kang  M,  Song  T,  Zhong  H,  et  al.  Contact  Tracing  for  Imported  Case  of  Middle  East
Respiratory  Syndrome,  China,  2015.  Emerg  Infect  Dis.  09  2016;22(9):1644-6.
doi:10.3201/eid2209.152116
21. Hellewell J, Abbott S, Gimma A, et al. Feasibility of controlling COVID-19 outbreaks by
isolation of cases and contacts.  Lancet Glob Health. 04 2020;8(4):e488-e496. doi:10.1016/S2214-
109X(20)30074-7
22. Hirten RP, Stanley S, Danieletto M, et al. Wearable Devices Are Well Accepted by Patients in

https://preprints.jmir.org/preprint/26107 [unpublished, peer-reviewed preprint]



JMIR Preprints Hirten et al

the  Study and Management  of  Inflammatory  Bowel  Disease:  A Survey Study.  Dig Dis  Sci.  Jul
2020;doi:10.1007/s10620-020-06493-y
23. Radin J, Wineinger NE, Topol EJ, Steinhubl SR. Harnessing wearable device data to improve
state-level
real-time surveillance of influenza-like illness in the USA:
a population-based study. Lancet Digital Health. 2020;2:e85–93. 
24. Ahmad S, Tejuja A, Newman KD, Zarychanski R, Seely AJ. Clinical review: a review and
analysis  of  heart  rate  variability  and  the  diagnosis  and  prognosis  of  infection.  Crit  Care.
2009;13(6):232. doi:10.1186/cc8132

Figure 1: Relationship between HRV circadian rhythm and COVID-19 status.
Timeline (A) illustrates HRV measures from the time of COVID-19 diagnosis via nasal PCR
and during the following 2 weeks where subjects were deemed to be COVID-19+ (red), and
were  compared with  measurements outside this  window,  where subjects were deemed
COVID- (green). Daily HRV rhythm (B) during days with COVID+ (red) and COVID- (green)
diagnosis, time (hours) is indicated by the x-axis while SDNN (ms) is indicated by the y-
axis. Plots (C) showing Mean and 95%CI for the parameters defining the circadian rhythm:
Acrophase, Amplitude and MESOR in COVID+ (red) and COVID- (green) days. Daily HRV
pattern (D, E) for days were subjects were healthy (green), 7 days before COVID-19+ test
(red),  7 days after COVID-19+ test (orange) and 7-14 days after COVID-19+ test (light
green), time (hours) is indicated by the x-axis while HRV (ms) is indicated by the y-axis.
Mean and 95% CI for the Acrophase, Amplitude and MESOR of the HRV measured on
days when participants were Healthy (green), 7 days before COVID-19+ test (red), 7 days
after COVID-19+ test (orange) and 7-14 days after COVID-19+ test (light green). 
+ P<0.1;*P<0.05; **P<0.01; ***P<0.001; ns, not significant

Figure 2. Number of symptom days per participant when evaluating days when participants
reported symptoms
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Figure 3: Relationship between HRV circadian rhythm and symptom onset.
Timeline (A) illustrates timing of symptom onset, HRV profiles of the first-symptom day (red)
were compared to all other days (green). Daily HRV rhythm (B) on day of first symptom
(red) and non/late-symptom (green) days, time (hours) is indicated by the x-axis and HRV
(ms) is indicated by the y-axis. Plots (C) showing Mean and 95%CI for the parameters
defining the circadian rhythm: Acrophase, Amplitude and MESOR on first symptom (red)
and non/late-symptom (green) days. Daily HRV pattern (D) for non/late-symptomatic days
(green), the day before first symptom (red), day of first symptom (orange) and day after first
symptom (light green), time (hours) is indicated by the x-axis while HRV (ms) is indicated by
the  y-axis.  Mean  and  95% CI  for  the  Acrophase,  Amplitude  and  MESOR of  the  HRV
measured on non/late-symptomatic days (green), the day before first symptom (red), day of
first symptom (orange) and day after first symptom (light green), 
+P<0.1;*P<0.05; **P<0.01; ***P<0.001; ns, not significant
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